Parathyroid Hormone Secretory Responses to Peroral Phosphate and Stimulability of Serum Levels of Carboxyl-Terminal Flanking Peptide (PND-21) of the Human Calcitonin Gene by Calcium in Normal Subjects and Osteoporotic Patients

  • Maximilian A. Dambacher
  • Joachim Ittner
  • Roman Muff
  • Jan A. Fischer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 208)


The roles of calciotropic hormones in the pathogenesis and treatment of osteoporosis are not clearly understood. Here we have assessed serum levels of immunoreactive parathyroid hormone (PTH) and urinary cyclic AMP excretion before and after acute peroral phosphate administration in osteoporotic patients and normal subjects of the same age. In some osteoporotic patients serum levels of PTH were measured after prolonged (5 days) treatment with peroral phosphate. Serum levels of immunoreactive carboxyl-terminal flanking peptide (PDN-21) (katacalcin is a synonym) of the human calcitonin gene which are closely related to calcitonin levels were also measured before and after iv calcium injections (1). The diagnosis of osteoporosis was established on the basis of at least one vertebral compression fracture. Control subjects had normal serum levels of calcium, phosphate and creatinine, and they presented no history of renal, hepatic and intestinal disease. None of the subjects were treated with glucocorticoids or were alcoholics.


Parathyroid Hormone Osteoporotic Patient Human Parathyroid Hormone Human Calcitonin Calciotropic Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Ittner, M. A. Dambacher, W. Born, J.-M. Ketelslegers, M. Buysschaert, P. M. Albert, A. E. Lambert, and J. A. Fischer, Diagnostic evaluation of measurements of carboxyl-terminal flanking peptide (PDN-21) of the human calcitonin gene in human serum, J. Clin. Endocrinol. Metab. 61: in press (1985).Google Scholar
  2. 2.
    C. Nagant de Deuxchaisnes, J. A. Fischer, M. A. Dambacher, J.-P. Devogelaer, C. E. Arber, J. M. Zanelli, J. A. Parsons, N. Loveridge, L. Bitensky, and J. Chayen, Dissociation of parathyroid hormone bio-activity and immunoreactivity in pseudohypoparathyroidism type I, J. Clin. Endocrinol.Metab. 53: 1105 (1981).CrossRefGoogle Scholar
  3. 3.
    P. 011es, F. Tschopp, D. W. Dempster, P. H. Tobler, R. Muff, and J. A. Fischer, Potassium stimulates parathyroid hormone release in the absence of extracellular calcium. Mol. Cell. Endocrinol. 32: 1 (1983).CrossRefGoogle Scholar
  4. 4.
    F. Albright, W. Bauer, D. Claflin, and J. R. Cokrill, Studies in parathyroid physiology. III. The effect of phosphate ingestion in clinical hyperparathroidism, J. Clin. Invest. 11: 411 (1932).CrossRefGoogle Scholar
  5. 5.
    E. Reiss, J. M. Canterbury, M. A. Bercovitz, and E. L. Kaplan, The role of phosphate in the secretion of parathyroid hormone in man, J. Clin. Invest. 49: 2146 (1970).CrossRefGoogle Scholar
  6. 6.
    U. Binswanger, and J. A. Fischer, Reponse of immunoreactive parathyroid hormone to intravenous phosphate infusion in primary hyperparathyroidism, Klin. Wschr. 52: 30 (1974).CrossRefGoogle Scholar
  7. 7.
    J. C. Gallagher, B. L. Riggs, C. M. Jerpbak, and C. D. Arnaud, The effect of age on serum immunoreactive parathyroid hormone in normal and osteoporotic women, J. Lab. Clin. Med. 95: 373 (1980).Google Scholar
  8. 8.
    J. Reeve, P. J. Meunier, J. A. Parsons, M. Bernat, 0. L. M. Bijvoet, P. Coupron, C. Edouard, L. Klenerman, R. M. Neer, J. C. Renier, D. Slovik, F. J. F. E. Vismans, and J. T. Potts Jr., Anabolic effect of human parathyroid hormone fragment on trabecular bone in involutional osteoporosis: A multicentre trial, Brit. Med. J. ii: 1340 (1980).Google Scholar
  9. 9.
    D. M. Slovik, R. M. Neer, and J. T. Potts Jr., Short-term effects of synthetic human parathyroid hormone-(1–34) administration on bone mineral metabolism in osteoporotic patients, J. Clin. Invest. 68: 1261 (1981).CrossRefGoogle Scholar
  10. 10.
    H. Rasmussen, P. Bordier, L. Auquier, J. B. Eisinger, D. Kuntz, F. Caulin, B. Argemi, J. Gueris, and A. Julien, Effect of combined therapy with phosphate and calcitonin one bone volume in osteoporosis, Bone 2: 107 (1980).Google Scholar
  11. 11.
    C. Anderson, R. D. T. Cape, R. G. Crilly, A. B. Hodsman, and B. M. J. Wolfe, Preliminary observations of a form of coherence therapy for osteoporosis, Calc. Tissue Int. 36: 341 (1984).CrossRefGoogle Scholar
  12. 12.
    P. H. Tobler, F. A. Tschopp, M. A. Dambacher, and J. A. Fischer, Salmon and human calcitonin-like peptides in man, Clin. Endocrinol. (Oxf.) 20: 253 (1984).CrossRefGoogle Scholar
  13. 13.
    R. K. Craig, L. Hall, M. R. Edbrooke, J. Allison, and I. Maclntyre, Partial nucleotide sequence of human calcitonin precursor mRNA identifies flanking cryptic peptides, Nature (Lond.) 295: 345 (1982).CrossRefGoogle Scholar
  14. 14.
    C. J. Hillyard, G. Abeyasekera, R. K. Craig, C. Myers, J. C. Stevenson, and I. Maclntyre, Katacalcin: A new plasma calcium-lowering hormone, Lancet i: 846 (1983).Google Scholar
  15. 15.
    B. A. Roos, M. B. Huber, R. S. Birnbaum, D. C. Aron, A. W. Lindall, K. Lips, and S. B. Baylin, Medullary thyroid carcinomas secrete a noncalcitonin peptide corresponding to the carboxyl-terminal region of preprocalcitonin, J. Clin. Endocrinol. Metab. 56: 802 (1983).CrossRefGoogle Scholar
  16. 16.
    C. J. Hillyard, J. C. Stevenson, and I. Maclntyre, Relative deficiency of plasma-calcitonin in normal women, Lancet i: 961 (1978).Google Scholar
  17. 17.
    L. J. Deftos, M. H. Weisman, G. W. Williams, D. B. Karpf, A. M. Frumar, B. J. Davidson, J. G. Parthemore, and H. L. Judd, Influence of age and sex on plasma calcitonin in human beings, N. Engl. J. Med. 302: 1351 (1980).CrossRefGoogle Scholar
  18. 18.
    J.-J. Body, and H. Heath III, Estimates of circulating monomeric calcitonin: Physiological studies in normal and thyroidectomized man, J. Clin. Endocrinol. Metab. 57: 897 (1983).CrossRefGoogle Scholar
  19. 19.
    H. M. Taggart, J. L. Ivey, K. Sisom, C. H. Chesnut III, D. J. Baylink, M. B. Huber, and B. A. Roos, Deficient calcitonin response to calcium stimulation in postmenopausal osteoporosis?, Lancet i: 475 (1982).Google Scholar
  20. 20.
    R. D. Tiegs, J.-J. Body, H. W. Wahner, J. Barta, B. L. Riggs, and H. Heath III, Calcitonin secretion in postmenopausal osteoporosis, N. Engl. J. Med. 312: 1097 (1985).CrossRefGoogle Scholar
  21. 21.
    R. Lindsay, D. M. Hart, J. M. Aitken, E. B. MacDonald, J. B. Anderson, and A. C. Clarke, Long-term prevention of postmenopausal osteoporosis by oestrogen: Evidence for an increased bone mass after delayed onset of oestrogen treatment, Lancet i: 1038 (1976).Google Scholar
  22. 22.
    L. S. Richelson, H. W. Wahner, L. J. Melton III, and B. L. Riggs, Relative contributions of aging and oestrogen deficiency to postmenopausal bone loss, N. Engl. J. Med. 311: 1273 (1984).CrossRefGoogle Scholar
  23. 23.
    R. P. Heaney, J. C. Gallagher, C. C. Johnston, R. Neer, A. M. Parfitt, and G. D. Whedon, Calcium nutrition and bone health in the elderly, Am. J. Clin. Nutr. 36: 986 (1982).Google Scholar
  24. 24.
    J. F. Aloia, S. H. Cohn, J. A. Ostuni, R. Cane, and K. Ellis, Prevention of involutional bone loss by exercise, Ann. Intern. Med. 89: 356 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Maximilian A. Dambacher
    • 1
  • Joachim Ittner
    • 1
  • Roman Muff
    • 1
  • Jan A. Fischer
    • 1
  1. 1.Research Laboratory for Calcium Metabolism, Departments of Orthopedic Surgery and MedicineUniversity of ZurichZurichSwitzerland

Personalised recommendations