Solubilization of a Guanine Nucleotide-Sensitive Parathyroid Hormone-Receptor Complex from Canine Renal Cortex

  • Robert A. Nissenson
  • Elaina Mann
  • Jane Winer
  • Anne Teitelbaum
  • Claude D. Arnaud
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 208)


The physiologic actions of PTH on kidney and bone are initiated by hormonal binding to receptors in the plasma membrane of responsive cells. Occupation of receptors by PTH leads to activation of adenylate cyclase and increased cellular levels of cAMP. Cyclic AMP in turn activates a protein kinase(s), which results in specific substrate phosphorylation and ultimately biologic effects. Most, though not all, evidence supports such a mechanism of PTH action (1). Perhaps most compelling in this regard is the functional hypoparathyroidism seen in a subgroup of patients with pseudohypoparathyroidism (type Ia) who have a genetic deficiency in the stimulatory guanine nucleotide binding component (Ns) of adenylate cyclase (2,3).


Parathyroid Hormone Adenylate Cyclase Guanine Nucleotide Soluble Complex Soluble Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F. Habener, M.Rosenblatt, and J.T. Potts, Jr, Parathyroid hormone: biochemical aspects of biosynthesis, secretion, action, and metabolism, Physiol Rev 64: 985 (1984)Google Scholar
  2. 2.
    Z. Farfel, A.S. Brickman, H.R. Kaslow, V.M. Brothers, and H.R. Bourne, Defect of receptor-cyclase coupling protein in pseudohypoparathyroidism, N Engl J Med 303: 237 (1980)CrossRefGoogle Scholar
  3. 3.
    M.A. Levine, R.W. Downs, M. Singer, S.J. Marx, G.D. Aurbach, and A.M. Spiegel, Deficient activity of guanine nucleotide regulatory protein in erythrocytes from patients with pseudohypoparathyroidism, Biochem Biophys Res Commun 94: 1319 (1980)Google Scholar
  4. 4.
    H.S. Sutcliffe, T.J. Martin, J.A. Eisman, and R. Pilczyk, Binding of parathyroid hormone to bovine kidney-cortex plasma membranes, Biochem J 134: 913 (1973)Google Scholar
  5. 5.
    F.P. DiBella, T.P. Dousa, S.S. Miller, and C.D. Arnaud, Parathyroid hormone receptors of renal cortex: specific binding of biolgically active, 125I-labeled hormone and relationship to adenylate cyclase activation, Proc Natl Acad Sci USA 71: 723 (1974)CrossRefGoogle Scholar
  6. 6.
    J.E. Lull, C.C. Malbon, and J. Chuang, Binding of tritiated bovine parathyroid hormone to plasma membranes from bovine kidney cortex, J Biol Chem 252: 1071 (1977)Google Scholar
  7. 7.
    R.A. Nissenson and C.D. Arnaud, Properties of the parathyroid hormone receptor-adenylate cyclase system in chicken renal plasma membranes, J Biol Chem 254: 1469 (1979)Google Scholar
  8. 8.
    G.V. Segre, M. Rosenblatt, B.L. Reiner, J.E. Mahaffey, and J.T. Potts, Jr, Characterization of parathyroid hormone receptors in canine renal cortical plasma membranes using a radioiodinated sulfur free hormone analogue, J Biol Chem 254: 6980 (1979)Google Scholar
  9. 9.
    E. Bellorin-Font and K.J. Martin, Regulation of the PTH receptor-cyclase system of canine kidney: effects of calcium, magnesium, and guanine nucleotides, Am J Physiol 241: F364 (1981)Google Scholar
  10. 10.
    A.P. Teitelbaum, R.A. Nissenson, and C.D. Arnaud, Coupling of the canine renal parathyroid hormone receptor to adenylate cyclase: modulation by guanyl nucleotides and N-ethylmaleimide, Endocrinology 111: 1524 (1982)CrossRefGoogle Scholar
  11. 11.
    L.R. Forte, S.G. Langeluttig, R.E. Poelling, and M.L. Thomas, Renal parathyroid hormone receptors in the chick: down-regulation in secondary hyperparathyroid animal models, Am J Physiol 242: E154 (1982)Google Scholar
  12. 12.
    A.P. Teitelbaum and G.J. Strewler, Parathyroid hormone receptors coupled to cyclic adenosine monophosphate formation in an established renal cell line, Endocrinology 114: 980 (1984)CrossRefGoogle Scholar
  13. 13.
    N.B. Pliam, K.O. Nyiredy, and C.D. Arnaud, Parathyroid hormone receptors in avian bone cells, Proc Natl Acad Sci USA 79: 2061 (1982)CrossRefGoogle Scholar
  14. 14.
    C.M. Silve, G.T. Hradek, A.L. Jones, and C.D. Arnaud, Parathyroid hormone receptors in intact embryonic bone: characterization and cellular localization, J Cell Biol 94: 379 (1982)CrossRefGoogle Scholar
  15. 15.
    R.E. Rizzoli, M. Somerman, T.M. Murray, and G.D. Aurbach, Binding of radioiodinated parathryoid hormone to cloned bone cells, Endocrinology 113: 1832 (1983)Google Scholar
  16. 16.
    D.J. Sammon, J.S. Brand, W.F. Neuman, and L.G. Raisz, Metabolism of labeled parathyroid hormone. I. Preparation of biologically active 125I-labeled parathyroid homone, Endocrinology 92: 1596 (1973)CrossRefGoogle Scholar
  17. 17.
    W.F. Neuman, M.W. Neuman, P.J. Sammon, and K. Lane, The metabolism of labeled parathyroid hormone. IL Methodological studies, Calcif Tissue Res 18: 241 (1975)Google Scholar
  18. 18.
    D.F. Fitzpatrick, G.R. Davenport, L. Forte, and E.J. Landon, Characterization of plasma membrane proteins in mammaliam kidney. L Preparation of membrane fraction and separation of the protein, J Biol Chem 244: 3561 (1969)Google Scholar
  19. 19.
    C.D. Arnaud, H.S. Tsao, and T. Littledike, Radioimmunoassay of human parathyroid hormone in serum, J Clin Invest 50: 21 (1971)CrossRefGoogle Scholar
  20. 20.
    G.W. Snedecor and W.G. Cochran, “Statistical Methods,” Iowa State University Press, Ames, Iowa (1967)Google Scholar
  21. 21.
    M. Korner, C. Gilon, and M. Schramm, Locking of hormone in the ßadrenergic receptor by attack on a sulfhydryl in an associated component, J Biol Chem 257: 3389 (1982)Google Scholar
  22. 22.
    J.K. Northrup, M.D. Smigel, and A.G. Gilman, The guanine nucleotide activating site of the regulatory component of adenylate cyclase. Identification by ligand binding, J Biol Chem 257: 11416 (1982)Google Scholar
  23. 23.
    L.M. Hjelmeland and A. Chrambach, Solubilization of functional membrane-bound receptors, in: “Receptor Biochemistry and Methodology, Vol. 1,” Alan R. Liss, Inc., New York (1984)Google Scholar
  24. 24.
    R.E. Corin, P. Ferriola, and D.B. Donner, Hepatic glucagon-receptor complexes lose sensitivity to the dissociating effect of GTP, J Biol Chem 257: 1626 (1982)Google Scholar
  25. 25.
    G.L. Stiles, R.H. Strasser, B.F. Kilpatrick, S.R. Taylor, and R.J. Lefkowitz, Endogenous proteinases modulate the function of the ß -adrenergic receptoradenylate cyclase system, Biochim Biophys Acta 802: 390 (1984)CrossRefGoogle Scholar
  26. 26.
    M.W. Draper, R.A. Nissenson, J. Winer, J. Ramachandran J, and C.D. Arnaud, Photoaffinity labeling of the canine renal receptor for parathyroid hormone, J Biol Chem 257: 3714 (1982)Google Scholar
  27. 27.
    M.D. Coltrera, J.T. Potts Jr, and M. Rosenblatt, Identification of a renal receptor for parathyroid hormone by photoaffinity radiolabeling using a synthetic analogue, J Biol Chem 256: 10555 (1981)Google Scholar
  28. 28.
    J.K. Northrup, P.C. Sternweis PC, M.D. Smigel, L.S. Schleifer, E.M. Ross, and A.G. Gilman, Purification of the regulatory component of adenylate cyclase, Proc Natl Acad Sci USA 77: 6516 (1980)CrossRefGoogle Scholar
  29. 29.
    J.D. Hildebrandt, J. Codina, R. Risinger, and L. Birnbaumer, Identification of a subunit associated with the adenyl cyclase regulatory proteins Ns and Ni, J Biol Chem 259: 2039 (1984)Google Scholar
  30. 30.
    R. Iyengar and J.T. Herberg, Structural analysis of the hepatic glucagon receptor, J Biol Chem 259: 5222 (1984)Google Scholar
  31. 31.
    R.G.L. Schorr, R.J. Lefkowitz, M.G. Caron, Purification of the ß-adrenergic receptor, J Biol Chem 256: 5820 (1981)Google Scholar
  32. 32.
    R.A. Cerione, B. Strulovici, J.L. Benovic, R.J. Lefkowitz, M.G. Caron, Pure ßadrenergic receptor: the single polypeptide confers catecholamine responsiveness to adenylate cyclase, Nature 306: 562 (1983)Google Scholar
  33. 33.
    C.C. Malbon and J.E. Zull, Studies of binding of parathyroid hormone to a detergent-dispersed preparation from bovine kidney cortex plasma membranes, J Biol Chem 252: 1079 (1977)Google Scholar
  34. 34.
    J.A. Reynolds, Interactions between proteins and amphiphiles, in: “Lipid-Protein Interactions,” P.C. Jost and O.H. Griffith, eds., John Wiley and Sons, New YorkGoogle Scholar
  35. 35.
    S. Makino, J.A. Reynolds, and C. Tanford, The binding of deoxycholate and Triton X-100 to proteins, J Biol Chem 248: 4926 (1973)Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Robert A. Nissenson
    • 1
    • 2
  • Elaina Mann
    • 1
    • 2
  • Jane Winer
    • 1
    • 2
  • Anne Teitelbaum
    • 1
    • 2
  • Claude D. Arnaud
    • 1
    • 2
  1. 1.Department of MedicineVeterans Administration Medical CenterSan FranciscoUSA
  2. 2.Departments of Medicine and PhysiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations