Immune Cells and Bone Resorption

  • M. Gowen
  • B. R. MacDonald
  • D. E. Hughes
  • H. Skjodt
  • R. G. G. Russell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 208)


The concept of interactions between cells of the immune system and bone in the control of bone turnover is far from new. The relationship between haematopoietic precursor cells and the osteoclast has long been recognised and studies on animals with congenital bone diseases such as osteopetrosis have identified defective components of the immune system as causing or contributing to the disease. For example, the op/op (osteopetrotic) rat exhibits thymic atrophy and the disease can be cured by either administration of normal bone marrow cells or by thymus transplant l. Several mutant rodents have been described in which the osteopetrosis can be cured by injection of bone marrow, spleen or thymocytes l. These studies suggest that a functioning immune system is necessary for the normal activity of the bone resorbing cells.


Bone Resorption Osteoclast Precursor Bone Marrow Culture Bone Resorbing Activity Stimulate Bone Resorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Milhaud and M.L. Labat, Thymus and osteopetrosis, Clin. Orthop. Rel. Res. 135: 260–271 (1978).Google Scholar
  2. 2.
    J.E. Horton, L.G. Raisz and H.A. Simmons, Bone resorbing activity in supernatant fluid from cultures of human peripheral blood leukocytes. Science 177: 793–795 (1972).CrossRefGoogle Scholar
  3. 3.
    D.A. Fishman and E.D. Hay, Origin of osteoclasts from mononuclear leukocytes in regenerating newt limbs, Anat. Record. 143: 329–334 (1962).CrossRefGoogle Scholar
  4. 4.
    D.G. Walker, Congenital osteopetrosis in mice cured by parabiotic union with normal siblings, Endocrinol. 91: 916–920 (1972).CrossRefGoogle Scholar
  5. 5.
    A.J. Khan and D.J. Simmons, Investigation of cell lineage in bone using chimera of chick and quail embyronic tissue, Nature 258: 323–327 (1975).Google Scholar
  6. 6.
    P. Ash, J.F. Loutit and K.M.S. Townsend, Osteoclasts derived from haemopoietic stem cells, Nature 283: 669–670 (1980).CrossRefGoogle Scholar
  7. 7.
    S.C. Marks and D.G. Walker, The haematogenous origin of osteoclasts: experimental evidence from osteopetrotic (microphthalmic) mice treated with spleen cells from beige mouse donors, Am. J. Anat. 161: 1–10 (1981).CrossRefGoogle Scholar
  8. 8.
    E. Burger, J.W.M. Van der Meer, J.S. Van Der Geuil, J.C. Gribnau, C.W. Thesingh and R. Van Furth, In vitro formation of osteoclasts from long term culture of bone marrow mononuclear phagocytes, J. Exp. Med. 156:1604–1614 (1982).CrossRefGoogle Scholar
  9. 9.
    M.A. Horton, E.F. Rimmer, D. Lewis, J.A.S. Pringle, K. Fuller and T.J. Chambers, Cell surface characterisation of the human osteoclast: phenotypic relationship to other bone marrow-derived cell types, J. Pathol. 144: 282–294 (1984).CrossRefGoogle Scholar
  10. 10.
    M.A. Horton, D. Louis, K. McNulty, J.A.S. Pringle and T.J. Chambers, Characterisation of monoclonal antibodies specific for human osteoclasts, Calcif. Tissue Int.(in press).Google Scholar
  11. 11.
    M.J. Oursler, L.V. Bell, B. Clevinger and P. Osdoby, Identification of osteoclast-specific monoclonal antibodies, J. Cell Biol. 100: 1592–1600 (1985).CrossRefGoogle Scholar
  12. 12.
    R. Baron, L. Neff, D. Ouvard and P. Courtoy, Acidification and bone resorption: immunocytochemical localisation of a lysosomal membrane protein at the ruffled border of osteoclasts, Calcif. Tissue Int. 36 (4) (1984).Google Scholar
  13. 13.
    A.Z. Zambonin-Zallone, A. Teti and M.V. Primavera, Isolated osteoclast in primary culture: first observations on structure and survival in tissue culture media, Anat. Embryol. 165: 405–413 (1982).CrossRefGoogle Scholar
  14. 14.
    P. Osdoby, M.C. Martini and A.I. Caplan, Isolated osteoclasts and their presumed progenitor cells, the monocyte, in culture, J. Exp. Zool., 224: 331–344 (1982).CrossRefGoogle Scholar
  15. 15.
    T.J. Helfey and P.H. Stern, Isolation of osteoclasts from fetal rat long bones, Calcif. Tissue Int. 34: 480–487 (1982).CrossRefGoogle Scholar
  16. 16.
    T.J. Chambers and A. Moore, The sensitivity of isolated osteoclasts to morphological transformation by calcitonin, J. Clin. Enocrinol. Metab. 57: 819–824 (1983).CrossRefGoogle Scholar
  17. 17.
    N.G. Testa, T.D. Allen, L.G. Lathja, D. Onions and O. Jarrett, Generation of osteoclasts in vitro. J. Cell Science 47: 127–137 (1981).Google Scholar
  18. 18.
    K.J. Ibbotson, G.D. Roodman, L.M. McManus and G.R. Mundy, Identification and characterisation of osteoclast-like cells and their progenitors in cultures of feline marrow mononuclear cells, J. Cell Bio1. 99: 471–480 (1984).CrossRefGoogle Scholar
  19. 19.
    G.D. Roodman, K.J. Ibbotson, B.R. MacDonald, T.J. Kuehl and G.R. Mundy, 1,25(OH)2 vitamin D3 causes formation of multinucleate cells with several osteoclast characteristics in cultures of primate marrow, Proc. Natl. Acad. Sci USA (in press).Google Scholar
  20. 20.
    B.R. MacDonald, N. Takahashi, L. McManus, G.R. Mundy and G.D. Roodman, Formation of multinucleated cells with osteoclastic characteristics in human long-term marrow cultures is controlled by calcium regulating hormones, Manuscript submitted.Google Scholar
  21. 21.
    G.R. Mundy and L.G. Raisz, Big and little forms of osteoclast activating factor, J. Clin. Invest. 60: 122–128 (1977).CrossRefGoogle Scholar
  22. 22.
    R.A. Luben, M C-Y Chen, D.M. Rosen and M.A. Mohler, Effects of osteoclast activating factor from human lymphocytes on cyclic AMP concentrations in isolated mouse bone and bone cells, Calcif. Tissue Int. 28: 32–32 (1979).CrossRefGoogle Scholar
  23. 23.
    R.S. Bockman and M. Repo, Lymphokine-mediated bone resorption requires endogenous prostaglandin synthesis, J. Exp. Med. 154: 529–534 (1981).CrossRefGoogle Scholar
  24. 24.
    T. Yoneda and G.R. Mundy, Prostaglandins are necessary for OAF production by activated peripheral blood leukocytes, J. Exp. Med. 149: 279–283 (1979).CrossRefGoogle Scholar
  25. 25.
    R.G. Josse, T.M. Murray, G.R. Mundy, D. Jez and J.N.M. Heersche, Observations on the mechanism of bone resorption induced by multiple myeloma culture fluids and partially-purified OAF, J. Clin. Invest. 67: 1472–1481 (1981).CrossRefGoogle Scholar
  26. 26.
    P. Chen, C. Trummel, J. Horton, T.J. Barker and T.J. Oppenheim, Production of osteoclast-activating factor by human peripheral blood rosetting and non-rosetting lymphocytes, Eur. J. Immunol. 6: 723–736 (1976).CrossRefGoogle Scholar
  27. 27.
    M. Horowitz, A. Vignery, R.K. Gershon and R. Baron, Thymus-derived lymphocytes and their interactions with macrophages are required for the production of osteoclast-activating factor in the mouse, Proc. Natl. Acad. Sci. USA 81: 2181–2185 (1984).CrossRefGoogle Scholar
  28. 28.
    M. Gowen, M.C. Meikle and J.J. Reynolds, Stimulation of bone resorption in vitro by a non-prostanoid factor released by human monocytes in culture, Biochim. Biophys. Acta. 762: 471–474 (1983).CrossRefGoogle Scholar
  29. 29.
    B. Rutherford and C.L. Trummel, Monocyte-mediated bone resorption involves release of non-dialysable substances in addition to prostaglandin. J. Reticuloendothelial Soc. 33: 175–184 (1983).Google Scholar
  30. 30.
    M. Gowen, D.D. Wood, E.J. Ihrie, M.K.B. McGuire and R.G.G. Russell, An interleukin-1-like factor stimulates bone resorption in vitro, Nature 306: 378–380 (1983).CrossRefGoogle Scholar
  31. 31.
    P.T. Lomedico, U. Gubler, C.P. Hellmann, M. Pukovich, J.G. Giri, Y-C.E. Pan, K. Collier, R. Semionow, A.O. Chiva and S.B. Mizel, Cloning and expression of murine interleukin 1 cDNA in Escherichia coli, Nature 312: 458–462 (1984).CrossRefGoogle Scholar
  32. 32.
    M. Gowen and G.R. Mundy, Actions of recombinant interleukin 1, interleukin 2 and interferon gamma on bone resorption in vitro, Manuscript submitted.Google Scholar
  33. 33.
    M. Gowen, D.D. Wood and R.G.G. Russell, Stimulation of the proliferation of human bone cells in vitro by human monocyte products with interleukin 1 activity, J. Clin. Invest. 75: 1223–1228 (1985).CrossRefGoogle Scholar
  34. 34.
    B.M. Thomson and T.J. Chambers, Osteoblastic cells are induced by interleukin 1 (IL-l) to stimulate osteoclastic bone resorption, Calcif. Tissue Int. (in press).Google Scholar
  35. 35.
    P.P. Stashenko and F.F. Dewhirst, Purification of osteoclast-activating factor, Calcif. Tissue Int.(in press).Google Scholar
  36. 36.
    A.H. Tashjian, E.L. Hohman, H.N. Antoniades and L. Levine, Platelet-derived growth factor stimulates bone resorption via a prostaglandin-mediated mechanism, Endocrinol. 111: 118–123 (1982).CrossRefGoogle Scholar
  37. 37.
    A.H. Tashjian, E.F. Voelkel, M. Lazzaro, F.S. Singer, A.B. Roberts, R. Derynck, M.E. Winkler and L. Levine, and human transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria, Proc. Natl. Acad. Sci. USA 82: 4535–4538 (1985).CrossRefGoogle Scholar
  38. 38.
    Bertolini, G.E., Nedwin, T.S., Bringman and G.R. Mundy, Recombinant human cytokines with tumour necrosis activity stimulate osteoclastic bone resorption in vitro, Manuscript submitted.Google Scholar
  39. 39.
    D.H. Pluznik and L. Sachs, The induction of clones of normal mast cells by a substance from conditioned medium, Exp. Cell. Res. 43: 553–563 (1966).CrossRefGoogle Scholar
  40. 40.
    T.R. Bradley and D. Metcalf, The growth of mouse bone marrow cells in vitro, Aust. J. Exp. Biol. Med. Sci. 44: 287–300 (1966).CrossRefGoogle Scholar
  41. 41.
    E.R. Stanley, Colony stimulating factors. In: The Lymphokines: biochemistry and biological activity (W.E. Stewart and J.W. Hodder eds). Humana Press, New Jersey, pp 102–132 (1981).Google Scholar
  42. 42.
    A.W. Burgess and D. Metcalf, The nature of granulocyte macrophage colony-stimulating factors, Blood 56: 947–958 (1980).Google Scholar
  43. 43.
    B.R. MacDonald, G.R. Mundy, S. Clark, E.A. Wong, T.J. Kuehl, E.R. Stanley and G.D. Roodman, Human recombinant CSF-GM and highly purified CSF-1 stimulate the formation of multinucleated cells with osteoclast characteristics in long-term bone marrow cultures. Manuscript submitted.Google Scholar
  44. 44.
    W. Wiktor-Jedrzejzcak, A. Ahmed, C. Szczylik and R.R. Skelly, Hematological characterisation of congenital osteopetrosis in the op/op mouse, J. Exp. Med. 156: 1516–1527 (1982).CrossRefGoogle Scholar
  45. 45.
    P.W. Gray and D.V. Goeddel, Cloning and expression of murine immune interferon cDNA, Proc. Natl. Acad. Sci. USA 80: 5842–5846 (1983).CrossRefGoogle Scholar
  46. 46.
    M.Gowen, G.E. Nedwin and G.R. Mundy, Preferential inhibition of cytokine-stimulated bone resorption by recombinant interferon gamma, Manuscript submitted.Google Scholar
  47. 47.
    R.L. Jilka and J.W. Hamilton, Inhibition of parathormone-stimulated bone resorption by type I interferon, Biochem. Biophys. Res. Commun. 120: 553–558 (1984).CrossRefGoogle Scholar
  48. 48.
    M. Takei, K. Takeda and K. Konno, The role of interferon in induction of differentiation of human myeloid leukemia cell lines ML-1 and HL-60, Biochem. Biophys. Res. Commun. 124: 100–105 (1984).CrossRefGoogle Scholar
  49. 49.
    C. Minkin, L. Blackman, J. Newbrey, S. Potress, R. Posek and M. Walling, Effects of parathyroid hormone and calcitonin on adenylate cyclase in murine mononuclear phagocytes, Biochem. Biophys. Res. Commun. 76: 875–881 (1977).CrossRefGoogle Scholar
  50. 50.
    H. Tanaka, E. Abe, C. Miyaura, Y. Shira and T. Suda, 1,25(OH)2D3 induces differentiation of human promyelocytic leukemia cells into monocyte macrophages but not into granulocytes, Biochem. Biophys. Res. Commun. 117: 86–93 (1983).CrossRefGoogle Scholar
  51. 51.
    E.P. Amento, A.K. Bhalla, J.T. Kurnick, R.L. Kradin, T.L. Clemens, S.A. Holick, M.F. Holick and S.M. Krane, 1,25-dihydroxyvitamin D3 induces maturation of the human monocyte cell line U937, and in association with a factor from human T lymphocytes augments production of the monokine, mononuclear cell factor, J. Clin. Invest. 73: 731–739 (1984).CrossRefGoogle Scholar
  52. 52.
    G.A. Rodan and T.J. Martin, Role of osteoblasts in hormonal control of bone resorption–a hypothesis, Calcif. Tiss. Int. 33: 349–352 (1981).CrossRefGoogle Scholar
  53. 53.
    H.M. Perry, J.C. Chappel, E. Bellorin-Font, K.J. Martin and S.L. Teitelbaum, Parathyroid hormone receptors on circulating human mononuclear leukocytes, J. Biol. Chem. 259: 5531–5535 (1984).Google Scholar
  54. 54.
    I. Yamamoto, J.T. Potts and G.V. Segre, Circulating bovine lymphocytes contain receptors for parathyroid hormone, J. Clin. Invest. 71: 404–408 (1983).CrossRefGoogle Scholar
  55. 55.
    S.J. Marx, G.D. Aurbach, J.R. Gavin, D.W. Buell, Calcitonin receptors on cultured human lymphocytes, J. Biol. Chem. 149:6812–6816 (1974)Google Scholar
  56. 56.
    W.F.C. Rigby, T. Stacy and M.W. Faviger, Inhibition of T lymphocyte mitogenesis by 1,25 dihydroxyvitamin D3, J. Clin. Invest. 74: 1451–1455 (1984).CrossRefGoogle Scholar
  57. 57.
    R. Baron, A. Vignery and M. Horowitz, Lymphocytes, macrophages and the regulation of bone remodeling. In: Bone and Mineral Research, Annual 2. (Peck WA ed) Elsevier Science Publishers pp 175–246 (1983).Google Scholar
  58. 58.
    G. Groenewegen, W.A. Buurman and C.J. Van der Linden, Lymphokine dependence of in vivo expression of MHC class II antigens by endothelium, Nature 326: 361–363 (1985).CrossRefGoogle Scholar
  59. 59.
    E.P. Amento, A.K. Bhan, K.G. McCullagh and S.M. Krane, Influences of gamma interferon on synovial fibroblast-like cells, J. Clin. Invest, 76: 837–848 (1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. Gowen
    • 1
  • B. R. MacDonald
    • 1
  • D. E. Hughes
    • 1
  • H. Skjodt
    • 1
  • R. G. G. Russell
    • 1
  1. 1.Department of Human Metabolism & Clinical BiochemistryUniversity of Sheffield Medical SchoolSheffieldUK

Personalised recommendations