Calcium, Cell Function and Cell Death

  • Louis V. Avioli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 208)


The nature of the biologic mechanism(s) which initiate and perpetuate the aging process is still under intensive investigation. Although those with vested interests in “aging research” would agree that the programming of the aging phenomenon is related to specific acquired and/or genetic molecular dysfunctions which condition DNA and protein synthesis, and post-translational events in cells, the fundamental “trigger” mechanism(s) which activates mammalian senescence has yet to be discovered. A number of theories have been promulgated to account for the molecular cellular dysfunctions which attend the senescent process. These include: (a) alterations in host-defense systems and cell-mediated immunity; (b) progressive accumulations of circulating “toxic” substances which damage DNA; (c) an acquired inability to destroy “free-radicals”, the latter resulting in the cellular accumulation of superoxide and hydrogen peroxide type reactants and a gradual decline in cellular integrity; (d) cellular “commitment” theories which stress programmed aging and finite replicative life-span of cells; and (e) gradual alterations in those mechanisms which regulate cytosolic calcium concentration resulting in molecular disarray, decrease in, cellular viability and cell death.


Cystic Fibrosis Amyotrophic Lateral Sclerosis Parathyroid Hormone Vascular Smooth Muscle Cell Cytosolic Calcium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Racker, E.: Fluxes of Ca2+ and concepts. Federation Proc. 39: 2422–2426, 1980.Google Scholar
  2. 2.
    Shapiro, B.L., Lam, L.F-H.: Calcium and Age in Fibroblasts from Control Subjects and Patients with Cystic Fibrosis. Science 216: 417–419, 1982.Google Scholar
  3. 3.
    Holliday, R., Tarrant, G.M.: Altered Enzymes in Aging Human Fibroblasts. Nature 238: 26–30, 1972.CrossRefGoogle Scholar
  4. 4.
    Subryan, V.L., Solomons, C.C., Gordon, S.G., Neldaer, K.H., Reeve, E.B.: A micromethod for the quantitative analysis of calcium magnesium and phosphorus in human skin. J. Lab. Clin. Med. 86: 1056–1060, 1975.Google Scholar
  5. 5.
    Shapiro, B.L., Lam, L.F-H., Fast, L.H.: Premature Senescence in Cultured Skin Fibroblasts from Subjects with Cystic Fibrosis.Science 203: 1251–1253, 1979.Google Scholar
  6. 6.
    Lam, L.F-H., Shapiro, B.L.: Differential Incorporation of H-Thymidi4e into DNA in Cultured Skin Fibroblasts Derived from Patients with Cystic Fibrosis and Control. Life Sci. 24: 2483–2489, 1979.CrossRefGoogle Scholar
  7. 7.
    Subramoniam, A., Padh, H., Aleo, J.J.: Factors Influencing Calcium Influx in Endotoxin-Challenged Fibroblasts. Proc. of the Soc. for Exp. Biol. and Med. 178: 50–59, 1985.Google Scholar
  8. 8.
    Chizzonite, R.A., Zak, R.: Calcium-Induced Cell Death: Susceptibility of Cardiac Myocytes Is Age-Dependent. Science 213: 1508–1510, 1981.Google Scholar
  9. 9.
    Bogin, E., Massry, S.G., Harary, I.: Effect of Parathyroid Hormone on Rat Heart Cells. J. Clin. Invest. 67: 1215–1227, 1981.CrossRefGoogle Scholar
  10. 10.
    Council Report. Calcium Channel Blocking Agents. JAM 250: 2522–2524, 1983.CrossRefGoogle Scholar
  11. 11.
    Kramsch, D.M., Aspen, A.J., Apstein, C.S.: Suppression of Experimental Atherosclerosis by Ca++-Antagonist Lanthanum. Possible Role of Calcium in Atherogenesis. J. Clin. Invest. 65: 967–981, 1980.CrossRefGoogle Scholar
  12. 12.
    Nakajima, H., Hoshiyama, M., Yamashita, K., Kiyomoto, A.: Effect of diltiazem on electrical and mechanical activity of isolated cardiac ventricular muscle of guinea pig. Jpn. J. Pharmacol. 25: 383–387, 1975.CrossRefGoogle Scholar
  13. 13.
    Nago, T., Ikeo, T., Sato, M.: Influence of calcium ions in response to diltiazem in coronary arteries. Jpn. J. Pharmacol. 27: 330–334, 1977.CrossRefGoogle Scholar
  14. 14.
    Magaribuchi, T., Nakajima, H., Kiyomoto, A.: Effects of diltiazem in electrical and mechanical activity of isolated guinea pig atrial cell. Jpn. J. Pharmacol. 27: 361–364, 1977.CrossRefGoogle Scholar
  15. 15.
    Mehta, P., Mehta, J., Ostrowski, N., Brigmon, L.: Inhibitory effects of diltiazem on platelet activation caused by ionophore A23187 plus ADP or epinephrine in subthreshold concentrations. J. Lab. Clin. Med. 102: 332–339, 1983.Google Scholar
  16. 16.
    Erne, P., Bolli, P., Bürgisser, E., Bühler, F.R.: Correlation of Platelet Calcium with Blood Pressure. N. Engl. J. Med. 310: 1084–1088, 1984.Google Scholar
  17. 17.
    Bruschi, G., Bruschi, M.E., Caroppo, M., Orlandini, G., Spaggiari, M., Cavatorta, A.: Cytoplasmic free [Ca2+) is increased in the platelets of spontaneously hypertensive rats and essential hypertensive patients. Clin. Sci. 68: 179–184, 1985.Google Scholar
  18. 18.
    Capponi, A.M., Lew, P.D., Valloton, M.B.: Cytosolic Free Calcium Levels in Monolayers of Cultured Rat Aortic Smooth Muscle Cells. Effects of Angiotensin II and Vasopressin. J. Biol. Chem. 260: 7836–7842, 1985.Google Scholar
  19. 19.
    Nabika, T., Velletri, P.A., Lovenberg, W., Heaven, K.A.: Increase in Cytosolic Calcium and Phosphoinositide Metabolism Induced By Angiotensin II and [Avg) Vasopressin in Vascular Smooth Muscle Cells. J. Biol. Chem. 260: 4461–4670, 1985.Google Scholar
  20. 20.
    Kobayashi, S., Kanaide, H., Nakamura, M.: Cytosolic-Free Calcium Transients In Cultured Vascular Smooth Muscle Cells. Science 229: 553–556, 1985.CrossRefGoogle Scholar
  21. 21.
    Insogna, K.I., Lewis, A.M., Lipinski, B.A., Bryant, C., Baran, D.: Effect of Age on Serum Immunoreactive Parathyroid Hormone and Its Biological Effects. J. Clin. Endocrinol. Metab. 53: 1072–1080, 1981.CrossRefGoogle Scholar
  22. 22.
    Gallagher, J.C., Riggs, B.L., Jerpbak, C.M., Arnaud, C.: Effect of Age on Serum Immunoreactive Parathyroid Hormone in Normal and Osteoporotic Women. J. Lab. Clin. Med. 95: 373–385, 1980.Google Scholar
  23. 23.
    Wiske, P.S., Epstein, S., Bell, N., Queener, S.F., Edmondson, J., Johnston, C.C. Jr.: Increases in Immunoreactive Parathyroid Hormone With Age. N. Engl. J. Med. 300: 1419–1421, 1979.CrossRefGoogle Scholar
  24. 24.
    Roof, B.S., Piel, C.F., Hansen, J., Fadenberg, H.H.: Serum Parathyroid Hormone Levels and Serum Calcium Levels From Birth to Senescence. Mech. Ageing Dev. 5: 289–294, 1976.CrossRefGoogle Scholar
  25. 25.
    Brautban, N., Chakroborty, J., Coats, J., Massry, S.G.: Calcium, Parathyroid Hormone and Phospholipid Turnover of Human Red Blood Cells. Min. Elect. Metab. 11: 111–116, 1985.Google Scholar
  26. 26.
    Parsons, J.A., Neer, R.M., Potts, J.T.: Initial fall of plasma calcium after intravenous injection of parathyroid hormone. Endocrinology 89: 735–740, 1971.CrossRefGoogle Scholar
  27. 27.
    Rasmussen, H.: Calcium and cAMP stimuli-response coupling. Ann. NY. Acad. Sci. 356: 346–353, 1980.CrossRefGoogle Scholar
  28. 28.
    Farese, R.V., Bidot-Lopez, P., Sabir, M.A., Larson, R.E.: The phosphatidate-polyphosphoinositide cycle: activation by parathyroid hormone and dibutyryl-cAMP in rabbit kidney cortex. Ann. NY Acad. Sci. 372: 539–550, 1981.CrossRefGoogle Scholar
  29. 29.
    Chausmer, A.B., Sherman, B.S., Wallach, S.: Effect of Parathyroid Hormone on Hepatic Cell Transport of Calcium. Endocrinol. 90: 663–672, 1972.CrossRefGoogle Scholar
  30. 30.
    Borle, A.B.: Calcium Metabolism at the Cellular Level. Fed. Proc. 32: 1944–1947, 1973.Google Scholar
  31. 31.
    Massry, S.G.: Role of Parathyroid Hormone in the Pathogenesis of the Uremic Manifestation. Klin. Wochenschr. 57: 1085–1088, 1979.CrossRefGoogle Scholar
  32. 32.
    Bogin, E., Massry, S.G., Levi, J., Djaldelti, M., Bristol, G., Smith, J.: Effect of Parathyroid Hormone on Osmotic Fragility of Human Erythrocytes. J. Clin. Invest. 69: 1017–1025, 1982.CrossRefGoogle Scholar
  33. 33.
    Bogin, E., Leir, J., Harary, I., Massry, S.G.: Effects of Parathyroid Hormone on Oxidative Phosphorylation of Heart Mitochondria. Min. Elec. Metab. 7: 151–156, 1982.Google Scholar
  34. 34.
    Lopez-Bidot, P., Farese, R.V., Subiv, M.A.: Parathyroid Hormone and Kenosine-3’5’-Monophosphate Acutely Increase Phospholipids of the Phosphatidate-Polyphosphoinesitide Pathway in Rabbit Kidney Cortex Tubules in vitro by a Cedoheximide Sensitive Process. Endocrinol. 108: 2078–2081, 1981.CrossRefGoogle Scholar
  35. 35.
    Smith Bingham, J., Smith, L., Renee Brown, E., Barnes, D., Sabiv, M.A., Davis, J.S., Farese, R.Y.: Angiotensin II Rapidly Increases Phosphatidate-Phosphoinositide Synthesis and Phosphoinositide Hydrolysis and Mobilizes Intracellular Calcium in Cultured Arterial Muscle Cells. Proc. Nat. Acad. Sci. 81: 7812–7816, 1984.CrossRefGoogle Scholar
  36. 36.
    Herrmann, G., Hehrmann, R., Scholz, H., Atkinson, M., Lichten, P., Hesch, R-D.: Parathyroid hormone in coronary artery disease (submitted for publication).Google Scholar
  37. 37.
    Avioli, L.V.: Stones, bones, abdominal groans, psychic moans, and hypertones. Cardiovascular Medicine 3: 835–842, 1978.Google Scholar
  38. 38.
    Ackley, S., Barrett-Connor, E., Suarez, L.: Dairy products, calcium, and blood pressure. Am. J. Clin. Nutr. 38: 457–461, 1983.Google Scholar
  39. 39.
    Belizan, J.H., Villar, J., Zalazar, A. et al: Preliminary evidence of the effect of calcium supplementation on blood pressure in normal pregnant women. Am. J. Obstet. Gynecol. 146: 175–180, 1983.Google Scholar
  40. 40.
    Garcia-Palmieri, M.R., Costas, Jr., R., Cruz-Vidal, M., Sorlie, P.D., Tillotson, J., Havlik, R.J.: Milk Consumption, Calcium Intake, and Decreased Hypertension in Puerto Rico. Puerto Rico Heart Health Program Study. Hypertension 6: 322–328, 1984.Google Scholar
  41. 41.
    Kolata, G.: Does a Lack of Calcium Cause Hypertension? Several recent studies link calcium and high blood pressure but the medical community is divided on how to interpret them. Science 225: 705–706. 1984.CrossRefGoogle Scholar
  42. 42.
    Belizan, J.M., Villar, J., Pineda, O., Gonzalez, A.B., Sainz, E., Carrera, G., Sibrian, R.: Reduction of Blood Pressure with Calcium Supplementation in Young Adults. JAMA 249: 1061–1164, 1983.CrossRefGoogle Scholar
  43. 43.
    McCarron, D.A., Ellison, D.H., Anderson, S.: Vasodilation mediated by human PTH 1–34 in the spontaneously hypertensive rat. Am. J. Physiol. 246: (Renal Fluid Electrolyte Physiol. 15): F96 - F100, 1984.Google Scholar
  44. 44.
    Pang, P.K.T., Yang, M.C.H., Keutmann, H.T., Kenny, A.D.: Structure activity relationship of parathyroid hormone: Separation of the hypotensive and the hypercalcemic properties. Endocrinology 112: 284–289, 1983.CrossRefGoogle Scholar
  45. 45.
    Stanton, R.C., Plant, S.B., McCarron, D.A.: cAMP response of vascular smooth muscle cells to bovine parathyroid hormone. Am. J. Physiol. 247: (Endocrinol. Metab. 10): E822–E826, 1985.Google Scholar
  46. 46.
    Landfield, P.W., Pitler, T.A.: Prolonged Ca2+-Dependent Afterhyperpolarizations in Hippocampal Neurons of Aged Rats. Science 226: 1089–1091, 1984.CrossRefGoogle Scholar
  47. 47.
    Garruto, R.M., Fukatsu, R. Yanagihara, R., Gajdusek, D.C., Hook, G., Fiori, C.S.: Imaging of calcium and aluminum in neurofibrillary tangle-bearing neurons in parkinsonism-dementia of Guam. Proc. Natl. Acad. Sci. 81: 1875–1879, 1984.CrossRefGoogle Scholar
  48. 48.
    Luxenberg, J., Feigenbaum, L.Z., Aron, J.M.: Reversible long-standing dementia with normocalcemic hyperparathyroidism. Case Report. J. Amer. Geriatr. Soc., p. 546–547, 1984.Google Scholar
  49. 49.
    Goldstein, D.A., Chui, L.A., Massry, S.G.: Effect of parathyroid hormone and uremia on peripheral nerve calcium and motor nerve conduction velocity. J. Clin. Invest. 62: 88–93, 1978.CrossRefGoogle Scholar
  50. 50.
    Akmal, M., Goldstein, D.A., Multani, S., Massry, S.G.: Role of uremia, brain calcium, and parathyroid hormone on changes in electroencephalogram in chronic renal failure. Am. J. Physiol. 246: (Renal Fluid Electrolyte Physiol. 15): F575–F579, 1984.Google Scholar
  51. 51.
    Virgil: Eclogues IX, line 51.Google Scholar
  52. 52.
    Marx, J.L.: Aging Research (I): Cellular Theories of Senescence. Science 186: 1105–1107, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Louis V. Avioli
    • 1
  1. 1.Division of Bone and Mineral DiseasesWashington University School of MedicineSt. LouisUSA

Personalised recommendations