Renal Proximal Tubular Brush-Border Membrane Transport of Phosphate with Acute Acidosis

  • Barton S. Levine
  • Jeffrey A. Kraut
  • Delta R. Mishler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 208)


Recent studies from our laboratory (1) and that of other investigators (2) have shown that metabolic acidosis of several days duration is associated with suppression of phosphate transport by isolated brush-border membrane vesicles (BBMV) of the proximal tubule. The suppression is specific for the Pi transporter, since other Na-dependent transport processes are not altered.


Metabolic Acidosis Phosphate Transport Respiratory Acidosis Renal Brush Border Membrane Renal Brush Border Membrane Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.S. Levine, K. Ho, J.A. Kraut, J.W. Coburn and K. Kurokawa. Effect of metabolic acidosis on phosphate transport by the renal brush border membrane. Biochem. Biophys. Acta. 727: 7 (1983).CrossRefGoogle Scholar
  2. 2.
    S.A. Kempson. Effect of metabolic acidosis on renal brushborder membrane adaptation to low phosphorus diet. Kidney Internat. 22: 225 (1982).CrossRefGoogle Scholar
  3. 3.
    A. Roos and W.F. Boron. Intracellular pH. Phys. Rev. 61 (2): 296 (1981).Google Scholar
  4. 4.
    J. Guntupalli, B. Eby and K.Lau. Mechanism for the phosphaturia of NH4C1: dependence on acidemia but not on diet PO4 or PTH. Am. J. Physiol. 242 (11): F552 (1982).Google Scholar
  5. 5.
    B.S. Levine, K. Ho, A. Hodsman, K. Kurokawa and J.W. Coburn. Early renal brush border membrane adaptation to dietary phosphorus. Min. Elec. Metab. 10: 222 (1984).Google Scholar
  6. 6.
    J.C. Beck and B. Sacktor: The sodium electrochemical potential mediated uphill transport of D-glucose in renal brush border membrane vesicles. J. Biol. Chem. 253: 5531 (1978).Google Scholar
  7. 7.
    P.W. Barrett, J.M. Gertner and H. Rasmussen. Effect of dietary phosphate on transport of pig microvillus vesicles. Am. J. Physiol. 8: F352 (1980).Google Scholar
  8. 8.
    C. Evers, H. Murer and R. Kinne. Effect of parathyrin on the transport properties of isolated renal brush-border vesicles. Biochem J. 172: 49 (1978).Google Scholar
  9. 9.
    G.W. Snedcor and W.G. Cochran. Statistical methods. Ames, Iowa: Iowa State University Press pp. 91 (1967).Google Scholar
  10. 10.
    R.K. Webb, P.B. Woodhall, C.C. Tisher, G. Glaubiger, F.A. Neelon and R.R. Robinson. Relationship between phosphaturia and acute hypercapnia in the rat. J Clin. Invest. 60: 829 (1977).CrossRefGoogle Scholar
  11. 11.
    J. Guntupalli, and E. Bourke. Evidence that the phophaturic effect of acute hypercapnia is not due to the low systemic pH of hypercapnia. Kidney Internat. (in press).Google Scholar
  12. 12.
    L. Cheng, C. Dersch, E. Kraus, D. Spector and B. Sacktor. Renal adaptation to phosphate load in the acutely thyroparathyroidectomized rat: rapid alteration in brush border membrane phosphate transport. Am. J. Physiol. 246 (15): F488 (1984).Google Scholar
  13. 13.
    H. O~erleithner, R. Greger and F. Lang. Role of calcium in the decline of phosphate reabsorption during phosphate loading in acutely thyroparathyroidectomized rats. Pflugers Arch. 374: 249 (1978).CrossRefGoogle Scholar
  14. 14.
    A. Frick and I. Durasin. Maximal reabsorptive capacity for inorganic phosphate (Tmpi) in the absence of parathyroid hormone: Decrease on the Tmpi during prolonged administration of phosphate and the role of calcium. Pflugers Arch. 377: 9 (1978).Google Scholar
  15. 15.
    W.N. Suki. Effect of serum calcium on phosphate transport. Adv. Exp. Med. Biol. 178: 25 (1984).Google Scholar
  16. 16.
    B. Hoffken, D.K. Parkinson, P. Storms and I.C. Raddle. Effects of alterations of blood pH on calcium ion activity in rat plasma. Clin. Orthop. 78: 30 (1971).CrossRefGoogle Scholar
  17. 17.
    P.S. Aronson, J. Nee and M.A. Suhm. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature 299: 161 (1982).CrossRefGoogle Scholar
  18. 18.
    J.L. Kinsella and P.S. Aronson. Properties of the Na+ -H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 238: F461 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Barton S. Levine
    • 1
    • 2
  • Jeffrey A. Kraut
    • 1
    • 2
  • Delta R. Mishler
    • 1
    • 2
  1. 1.Veterans Administration Medical Center West Los AngelesThe Medical and Research ServicesLos AngelesUSA
  2. 2.Department of MedicineUCLA School of MedicineLos AngelesUSA

Personalised recommendations