Advertisement

Characteristics of Phosphate Transport Across the Basolateral Membrane of the Proximal Tubule: An in Vivo Study

  • Tim S. Yan
  • Gary A. Quamme
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 208)

Abstract

The final event in renal epithelial phosphate absorption is the movement of phosphate from the cytosol across the basolateral membrane into the peritubule capillary. The transmembrane potential difference is about −65 mV and the chemical concentration gradient is in the order of 1–5 mM inside-to-3mM outside. Accordingly, the transfer of phosphate may be passive down its electrical gradient. This is thought to be facilitated by a phosphate carrier within the basolateral membrane 1,2,3,4.

Keywords

Proximal Tubule Basolateral Membrane Brush Border Membrane Phosphate Transport Proximal Convoluted Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Grinstein, R. J. Turner, M. Silverman, and A. Rothstein, Inorganic anion transport in kidney and intestinal brush border and basolateral membranes. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol.): F452 (1980).Google Scholar
  2. 2.
    K. J. Ullrich, and H. Murer, Sulfate and phosphate transport in the renal proximal tubule. Philos. Trans. R. Soc. Lond. Ser. B. 229: 549 (1982).CrossRefGoogle Scholar
  3. 3.
    H. Murer, and G. Burckhardt, Membrane transport of anions across epithelia of mammalian small intestine and kidney proximal tubule. Rev. Physiol. Biochem. Pharmacol. 96: 1–51 (1983).CrossRefGoogle Scholar
  4. 4.
    I. Loew, T. Friedrich, and G. Burckhardt, Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15 ): 1, F334 - F342 (1984).Google Scholar
  5. 5.
    P. A. G. Fortes, Anion movements in red blood cells. Ann. NY Acad. Sci. 341: 175 (1980).Google Scholar
  6. 6.
    G. A. Quamme, and N. L. M. Wong, Phosphate transport in the proximal convoluted tubule: effect of intraluminal pH. Am. J. Physiol., 246 (Renal Fluid Electrolyte Physiol. 15): F323 - F333 (1984).Google Scholar
  7. 7.
    G. A. Quamme, and N. L. M. Wong, Effects of metabolic acidosis, alkalosis and dietary hydrogen ion inake on phosphate transport in the proximal convoluted tubule. Am. J. Physiol., in press (1985).Google Scholar
  8. 8.
    G. A. Quamme, C. L. Mizgala, S. J. Whiting, and N. L. M. Wong, Effect of intralumnal pH and dietary phosphate on phosphate transport in the proximal convoluted tubule. Am. J. Physiol., in press (1985).Google Scholar
  9. 9.
    T. H. Steele, and H. G. Deluca, Influence of dietary phosphorus on renal phosphate reabsorption in the parathyroidectomized rat. J. Clin. Invest. 57: 867 (1976).CrossRefGoogle Scholar
  10. 10.
    R. Stoll, R. Kinne, and H. Murer. Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush-border vesicles. Biochem. J. 180: 564–570 (1979).Google Scholar
  11. 11.
    H. Trohler, J.-P. Bonjour, and H. Fleisch, Inorganic phosphate homeostasis. Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. J. Clin. Invest. 57: 264 (1976).CrossRefGoogle Scholar
  12. 12.
    P. C. Brazy, and V. W. Dennis, Sulfate transport in rabbit proximal convoluted tubules: presence of anion exchange. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F300 - F307 (1981).Google Scholar
  13. 13.
    G. A. Quamme, Characteristics of phosphate transport across the basolateral membrane of the proximal tubule. Kidney Inter. 26: 26A (1984).Google Scholar
  14. 14.
    S. J. Schwab, and M. R. Hammerman, Sodium independent phosphate transport in basolateral membrane vesicles from dog kidney. Kidney Inter. 26: 28A (1984).Google Scholar
  15. 15.
    K. J. Ullrich, G. Rumrich, and S. Kloess, Contraluminal sulfate transport in the proximal tubule of the rat. I Kinetics, effects of K+, Na+, Ca2+, H+, and anions. Pfluegers Arch. 402: 264 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Tim S. Yan
    • 1
  • Gary A. Quamme
    • 1
  1. 1.Department of MedicineUniversity of British ColumbiaVancouverCanada

Personalised recommendations