High Energy Phosphates, Phospholipids, and Calcium in Ischemic Renal Tubular Cell Injury

  • H. David Humes
  • Vo D. Nguyen
  • Deborah A. Hunt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 208)

Abstract

It is becoming increasingly clear that the final common pathogenetic pathway for the development of ischemic acute renal failure is renal tubular cell injury.1,2 Acute renal failure developing from an ischemic insult occurs from tubular cell injury that produces segmental necrosis in renal tubules, so that a patchy distribution of frankly necrotic lesions appears to be the rule rather than the exception in the pathology of acute renal failure.3 The segmental, patchy renal tubular cell necrosis initiates a variety of factors responsible at the nephronal level for excretory failure of the kidney. These factors include intratubular obstruction, backleak of glomerular filtrate, and glomerular hemodynamic alterations. Ultimately, the understanding of the pathogenesis of acute tubular necrosis resides in the understanding of the biochemical alterations responsible for renal tubular cell injury. In this regard, declines in levels of high energy phosphates within the cell, alterations in cellular calcium metabolism, and degradation of membrane phospholipids appear to be metabolic derangements induced by ischemia critical in the evolution of cell injury.

Keywords

Permeability Magnesium Ischemia Adenosine Histamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. D. Humes and J. M. Weinberg, Alterations in renal tubular cell metabolism during acute renal failure, Min. Elect. Metab. 9: 290 (1983).Google Scholar
  2. 2.
    H. D. Humes and J. M. Weinberg, Cellular energetics in acute renal failure, in: “Acute Renal Failure,” B. M. Brenner and J. M. Lazarus, eds., W. B. Saunders, Philadelphia (1983).Google Scholar
  3. 3.
    J. I. Kriesberg, E. Matthys, and M. A. Venkatachalam, Morphologic factors in acute renal failure, in: “Acute Renal Failure,” B. M. Brenner and J. M. Lazarus, eds., W. B. Saunders, Philadelphia (1983).Google Scholar
  4. 4.
    D. Hems and J. Brosnan, Effects of ischaemia on content of metabolites in rat liver and kidney in vivo, Biochem. J. 120: 105 (1970).Google Scholar
  5. 5.
    M. Kahng, I. Berezesky, and B. Trump, Metabolic and ultrastructural response of rat kidney cortex to in vitro ischemia, Exp. Molec. Path. 29: 183 (1978).Google Scholar
  6. 6.
    H. Osswald, H.J. Schmitz, and R. Kemper, Tissue content of adenosine, inosine and hypoxanthine in the rat kidney after ischemia and postischemic recirculation, Pflugers Arch. 317: 45 (1977).Google Scholar
  7. 7.
    W. Miller, R. Thomas, R. Berne, and R. Rubio, Adenosine production in the ischemic kidney, Circulation Res. 43: 390 (1978).Google Scholar
  8. 8.
    N. J. Siegel, W. B. Glazier, I. H. Chaudry, K. M. Gaudio, B. Lytton, A. E. Baue, and M. Kashgarian, Enhanced recovery from acute renal failure by the postischemic infusion of adenine nucleotides and magnesium chloride in rats, Kidney Int. 17: 338 (1980).Google Scholar
  9. 9.
    K. M. Gaudio, M. R. Taylor, I. H. Chaudry, M. Kashgarian, and N. J. Siegel, Accelerated recovery of single nephron function by the postischemic infusion of ATP-MgC12, Kidney Int. 22: 13 (1982).CrossRefGoogle Scholar
  10. 10.
    K. M. Gaudio, T. A. Ardito, H. F. Reilly, M. Kashgarian, and N. J. Siegel, Accelerated cellular recovery after an ischemic renal injury, Am. J. Pathol. 112: 338 (1983).Google Scholar
  11. 11.
    H. D. Humes, D. A. Hunt, M. J. Clark, M. D. White, and J. M. Weinberg, Cellular mechanisms of protective maneuvers in nephrotoxic and ischemic acute renal failure, in: “Nephrology,” R. R. Robinson, ed., Springer-Verlag, New Ycrk (1984).Google Scholar
  12. 12.
    J. M. Weinberg, M. Clark, and H. D. Humes, Effects of exogenous ATP on tubule cell ATP levels, Clin. Res. 32: 459A (1984).Google Scholar
  13. 13.
    H. D. Humes, Role of calcium in the pathogenesis of acute renal failure, Am. J. Physiol. In press.Google Scholar
  14. 14.
    J. M. Weinberg, Calcium as a mediator of renal tubule cell injury, Semin. Nephrol. 4: 178 (1984).Google Scholar
  15. 15.
    F. Schanne, A. Kane, E. Young, and J. Farber, Calcium dependence of toxic cell death: a final common pathway, Science 206: 700 (1979).Google Scholar
  16. 16.
    H. D. Humes and J. M. Weinberg, Iomphore A23187 induced reductions in toad urinary bladder epithelial cell oxidative phosphorylation and viability, Pflugers Arch. 388: 21 7 (1980).Google Scholar
  17. 17.
    D. Hunter, R. Haworth, and J. Southard, Relationship between configuration, function, and permeability in calcium-treated mitochondria, J. Biol. Chem. 251: 506 (1976).Google Scholar
  18. 18.
    D. Pfeiffer, R. Kauffman, and H. Lardy, Effects of N-ethylmaleimide on the limited uptake of Ca++, Mn++, and Sr++ by rat liver mitochondria, J. Biol. Chem. 253: 4165 (1978).Google Scholar
  19. 19.
    D. Pfeiffer, P. Schmid, M. Beatrice, and H. Schmid, Intramitochondrial phospholipase activity and the effects of Ca++ plus N-ethylmaleimide on mitochondrial function, J. Biol. Chem. 254: 11485 (1979).Google Scholar
  20. 20.
    T. J. Burke, P. E. Arnold, J. A. Gordon, R. E. Bulger, D. C. Dobyan, and R. W. Schrier, Protective effect of intrarenal calcium membrane blockers before or after renal ischemia: functional, morphological and mitochondrial studies, J. Clin. Invest. 74: 1830 (1984).Google Scholar
  21. 21.
    C. D. Malis, J. Y. Cheung, L. Alexander, and J. Bonventre, Effects of verapamil in models of ischemic acute renal failure in the rat, Am. J. Physiol. 245: F735 (1983).Google Scholar
  22. 22.
    S. Singer and G. Nicolson, The fluid mosaic model of the structure of cell membranes, Science 175: 720 (1972).Google Scholar
  23. 23.
    J. Dahl and L. Hokin, The sodium-potassium adenosine triphosphatase, Ann Rev. Biochem. 43: 327 (1974).CrossRefGoogle Scholar
  24. 24.
    B. Rubalcava and M. Rodbell, The role of acidic phospholipids in glucagon action on rat liver adenylate cyclase, J. Biol. Chem. 248: 3831 (1973).Google Scholar
  25. 25.
    D. Green, M. Fry, and G. Blondin, Phospholipids as the molecular instruments of ion and solute transport in biological membranes, Proc. Nat. Acad. Sci. USA 77: 257 (1980).Google Scholar
  26. 26.
    P. Cullis, B. deKruijff, M. Hope, R. Nayar, and S. Schmid, Phospholipids and membrane transport, Can. J. Biochem. 58: 1091 (1980).Google Scholar
  27. 27.
    L. Jones, S. Cockcroft, and R. Mitchell, Stimulation of phosphatidylinositol turnover in various tissues by cholinergie and adrenergic agonists, by histamine and by coerulein, Biochem. J. 182: 669 (1979).Google Scholar
  28. 28.
    K. Chien, J. Abrams, A. Serroni, J. Martin, and J. Farber, Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury, J. Biol. Chem. 253: 4809 (1978).Google Scholar
  29. 29.
    J. Farber, K. Chien, and S. Mittnacht, The pathogenesis of irreversible cell injury in ischemia, Am. J. Pathol. 102: 271 (1981).Google Scholar
  30. 30.
    J. Farber, The role of calcium in cell death, Life Sci. 29: 1289 (1981).Google Scholar
  31. 31.
    K. R. Chien, R. G. Pfau, and J. L. Farber, Ischemic myocardial cell injury: prevention by chlcrpromazine of an accelerated phospholipid degradation and associated membrane dysfunction, Am. J. Pathol. 97: 505 (1979).Google Scholar
  32. 32.
    V. D. Nguyen, D. A. Hunt, P. A. Weinhold, and H. D. Humes, Injurious effects of exogenous phospholipase on renal proximal tubule segments, KidneyInt. In press.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • H. David Humes
    • 1
  • Vo D. Nguyen
    • 1
  • Deborah A. Hunt
    • 1
  1. 1.Departments of Internal Medicine, Veterans Administration Medical CenterUniversity of MichiganAnn ArborUSA

Personalised recommendations