Ischemic Brain Damage in the Rat in a Long Term Recovery Model

  • Roland N. Auer
  • M.-L. Smith
  • B. K. Siesjö
Part of the NATO ASI Series book series (NSSA, volume 115)


Since the pioneering experiments of Grenell (1), who demonstrated neuronal necrosis in dogs after periods of ischemia from only two to less than ten minutes, there has been controversy as to the minimum time necessary to produce permanent brain damage after ischemia. The maximum duration of ischemia which the animal can survive indefinitely (“revival time”) has also been the subject of some dispute, with times as long as one hour having been reported for recovery of at least basic neurophysiologic functions (2,3).


Caudate Nucleus Brain Damage Forebrain Ischemia Ischemic Brain Damage Venous Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grenell RG, Central nervous system resistance. I. The effects of temporary arrest of cerebral circulation for periods of two to ten minutes, J Neuropathol Exp Neurol 5: 131 (1946).CrossRefGoogle Scholar
  2. 2.
    Hossmann KA, Kleihues P, Reversibility of ischemic cell damage, Arch Neurol 29: 375 (1973).CrossRefGoogle Scholar
  3. 3.
    Hossmann KA, Zimmermann V, Resuscitation of the monkey brain after 1 h complete ischemia. I., Brain Res 81: 59 (1974).CrossRefGoogle Scholar
  4. 4.
    Kirino T, Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res 239: 57 (1982).CrossRefGoogle Scholar
  5. 5.
    Kirino T, Sano K, Selective vulnerability in the gerbil hippocampus following transient ischemia, Acta Neuropathol (Berl.) 62: 201 (1984).CrossRefGoogle Scholar
  6. 6.
    Brown AW, Levy DE, Kublik M, Harrow J, Plum F, Brierley JB, Selective chromatolysis of neurons in the gerbil brain. Ann Neurol 5: 127 (1979).CrossRefGoogle Scholar
  7. 7.
    Pulsinelli WA, Brierley JB, Plum F, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann Neurol 11: 491 (1982).CrossRefGoogle Scholar
  8. 7a.
    Kirino T, Tamura A, Sano K, Delayed neuronal death in the rat hippo-campus following transient forebrain ischemia, Acta Neuropathol (Berl.) 64: 139 (1984).CrossRefGoogle Scholar
  9. 8.
    Smith ML, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjö BK, Models for studying long-term recovery following forebrain ischemia in the rat. 2., Acta Neurol Scand 69: 385 (1984).CrossRefGoogle Scholar
  10. 9.
    Smith ML, Auer RN, Siesjö BK, The distribution of ischemic brain damage in the rat after two to ten minutes forebrain ischemia, Acta Neuropathol (Berl.) 64: 319 (1984).CrossRefGoogle Scholar
  11. 10.
    Hirsch H, Müller HA, Funktionelle and histologische Veränderungen des Kaninchengehirns nach kompletter Gehirnischämie, Pflügers Archiv 275: 277 (1962).CrossRefGoogle Scholar
  12. 11.
    Neely WA, Youmans JR, Anoxia of canine brain without damage, JAMA 183: 1085 (1963).CrossRefGoogle Scholar
  13. 12.
    Hossmann KA, Olsson Y, Supression and recovery of neuronal function in transient cerebral ischemia, Brain Res 22: 313 (1970).CrossRefGoogle Scholar
  14. 13.
    Miller JR, Myers RE, Neurological effects of systemic circulatory arrest in the monkey, Neurology 20: 715 (1970).CrossRefGoogle Scholar
  15. 14.
    Ito U, Spatz M, Walker JT Jr, Klatzo I, Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopic observations, Acta Neuropathol (Berl.) 32: 209 (1975).CrossRefGoogle Scholar
  16. 15.
    Mrsulja BB, Mrsulja BJ, Ito U, Walker JT Jr, Spatz M, Klatzo I, Experimental cerebral ischemia in Mongolian gerbils. II. Changes in carbohydrates, Acta Neuropathol (Berl.) 33: 91 (1975).CrossRefGoogle Scholar
  17. 16.
    Ginsberg MD, Welsh FA, Budd WW, Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. I. Local cerebral blood flow and glucose utilization, Stroke 11: 347 (1980).CrossRefGoogle Scholar
  18. 17.
    Myers RE, Yamaguchi M, Effects of serum glucose concentration on brain response to circulatory arrest, J Neuropathol Exp Neurol 35: 301 (1976).CrossRefGoogle Scholar
  19. 18.
    Pulsinelli WA, Waldman S, Rawlinson D, Plum F, Moderate hyperglycemia augments ischemic brain damage: A neuropathologic study in the rat, Neurology 32: 1239 (1982).CrossRefGoogle Scholar
  20. 19.
    Siemkowicz E, Hansen AJ, Clinical restitution following cerebral ischemia in hypo-, normo-, and hyperglycemic rats, Acta Neurol Scand 58: 1 (1978).CrossRefGoogle Scholar
  21. 20.
    Siemkowicz E, Gjedde A, Post-ischemic coma in rat: effect of different pre-ischemic blood glucose levels on cerebral metabolic recovery after ischemia, Acta Physiol Scand 110: 225 (1980).CrossRefGoogle Scholar
  22. 21.
    Diemer NH, Siemkowicz E, Regional neuronal damage after cerebral ischemia in the normo-and hypoglycemic rat, Neuropathol Appl Neurobiol 7: 217 (1981).CrossRefGoogle Scholar
  23. 22.
    Welsh FA, Ginsberg MD, Rieder W, Budd WW, Deleterious effect of glucose pretreatment on recovery from diffuse cerebral ischemia in the cat. IL Regional metabolite levels, Stroke 11: 355 (1980).CrossRefGoogle Scholar
  24. 23.
    Myers RE, Lactic acid accumulation as a cause of brain edema and cerebral necrosis resulting from oxygen deprivation, in: “Advances in perinatal neurology”, Korobkin R, Guillemineault G, eds., Spectrum Publishers, New York (1979).Google Scholar
  25. 24.
    Rehncrona S, Rosen I, Siesjö BK, Brain lactic acidosis and ischemic cell damage: 1. Biochemistry and neurophysiology, J Cerebr Blood Flow Metabol 1: 297 (1981).CrossRefGoogle Scholar
  26. 25.
    Kalimo H, Rehncrona S, Söderfeldt B, Olsson Y, Siesjö B, Brain lactic acidosis and ischemic cell damage. 2. Histopathology, J Cerebr Blood Flow Metabol 1: 313 (1981).CrossRefGoogle Scholar
  27. 26.
    Ng LK, Nimmannitya I, Massive cerebral infarction with severe brain swelling, Stroke 1: 158 (1970).CrossRefGoogle Scholar
  28. 27.
    O’Brien M, Jordan MM, Waltz AG, Ischemic cerebral edema and the blood-brain barrier. Distributions of pertechnetate, albumin, sodium, and antipyrine in brains of cats after occlusion of the middle cerebral artery, Arch Neurol 30: 461 (1974).Google Scholar
  29. 28.
    O’Brien MD, Waltz AG, Intracranial pressure gradients caused by experimental cerebral ischemia and edema, Stroke 4: 694 (1973).CrossRefGoogle Scholar
  30. 29.
    Shaw CM, Alvord EC, Berry RG, Swelling of the brain following ischemic infarction with arterial occlusion, Arch Neurol 1: 161 (1959).CrossRefGoogle Scholar
  31. 30.
    Schuier FJ, Hossmann KA, Experimental brain infarcts in cats. II. Ischemic brain edema, Stroke 11: 593 (1980).CrossRefGoogle Scholar
  32. 31.
    White OB, Norris JW, Hachinski VC, Lewis A, Death in early stroke, causes and mechanisms, Stroke 10: 743 (1979).CrossRefGoogle Scholar
  33. 32.
    Welsh FA, Ginsberg MD, Rieder W, Budd WW, Diffuse cerebral ischemia in the cat. II. Regional metabolites during severe ischemia and recirculation, Ann Neurol 3: 493 (1978).CrossRefGoogle Scholar
  34. 33.
    Ginsberg MD, Graham DI, Welsh FA, Budd WW, Diffuse cerebral ischemia in the cat: III. Neuropathologic sequelae of severe ischemia, Ann Neurol 5: 350 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Roland N. Auer
    • 1
  • M.-L. Smith
    • 1
  • B. K. Siesjö
    • 1
  1. 1.Laboratory for Experimental Brain Research E-BlocketUniversity HospitalLundSweden

Personalised recommendations