Secondary Changes in Human and Experimental Brain Infarction with Particular Consideration of Microembolism

  • K. J. Zülch
Part of the NATO ASI Series book series (NSSA, volume 115)


It may be useful to start the discussion of the subject with a definition of “secondary” changes although this is difficult in cerebral infarction. Therefore, I will try to define secondary changes of another entity, namely in brain tumor. Here, perifocal edema certainly is the most important secondary process which may induce further changes such as an increase of the intracranial pressure, shift of the brain mass and herniation. A final result of these processes may be “edema necrosis” (Jacob, 1940), which is characterized in the white matter by demyelinization. However, even this may not constitute the final consequence, since shrinking may follow secondary to organization of the tissue debris. Obviously, a chain of secondary changes follows the primary process in neoplastic disease of the brain.


Multiple Sclerosis White Matter Brain Edema Secondary Change Brain Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Borst M, Zur pathologischen Anatomie und Pathogenese der multiplen Sklerose des Gehirns und Rückenmarks, Beitr pathol Anat 21: 308 (1897).Google Scholar
  2. Courville CB, Multiple sclerosis as an incidental complication of a disorder of lipid metabolism, Bull Los Angeles Neurol Soc 24: 60 (1959).Google Scholar
  3. Fisher BH, Marks M, Reich T, Hyperbaric-oxygen treatment of multiple sclerosis, N Engl J Med 308: 181 (1983).CrossRefGoogle Scholar
  4. Ghatak NR, Zimmerman HM, Cerebral bone marrow embolism, Arch Pathol 92: 112 (1971).Google Scholar
  5. Gosset A, Gambarelli-Dubois D, Riche D, Fructus X, Naquet R, Tentatives therapeutiques par l’hyperbarie de l’embolie gazeuse carotidienne chez le babouin, Rev Neurol 121: 531 (1969).Google Scholar
  6. Hansbrough JF, Piacentine JG, Eiseman B, Immunosuppression by hyperbaric oxygen, Surgery 87: 662 (1980).Google Scholar
  7. Hochstetter AR, Friede RL, Residual lesions of cerebral fat embolism, J Neurol 216: 227 (1977).CrossRefGoogle Scholar
  8. Hossmann KA, Pathophysiology of vasogenic and cytotoxic brain edema, in “Treatment of cerebral edema”, Hartmann A, Brock M, eds., Springer, Berlin (1982).Google Scholar
  9. Jacob H, Über die diffuse Markdestruktion im Gefolge eines Hirnödems (Diffuse Ödemnekrose des Hemisphärenmarkes), Z Ges Neurol Psychiatr 168: 382 (1940).CrossRefGoogle Scholar
  10. Lazorthes G, Espagno J, Arbus L, Van Hong N, Les embolies grasseuses en pratique neuro-chirurgicale, Neuro-chirurgie 11: 253 (1940).Google Scholar
  11. Reulen HJ, Schürmann K, eds., “Steroids and brain edema”, Springer, Berlin (1972).Google Scholar
  12. Rindfleisch E, Histologisches Detail zu der grauen Degeneration von Gehirn und Rückenmark, Arch Pathol Anat Physiol 26: 474 (1863).CrossRefGoogle Scholar
  13. Schuier FJ, Vise WM, Hossmann KA, Zülch KJ, Cerebral microembolization. II. Morphological studies, Arch Neurol 35: 264 (1978).CrossRefGoogle Scholar
  14. Siegel BA, Meidinger R, Elliot AJ, Studer R, Curtis C, Morgan J, Potchen EJ, Experimental cerebral microembolism: Multiple tracer assessment of brain edema. Arch Neurol 26: 73 (1972).CrossRefGoogle Scholar
  15. Swank RL, Hain F, The effect of different size emboli on the vascular system and parenchyma of the brain, J Neuropathol Exp Neurol 11: 280 (1952).CrossRefGoogle Scholar
  16. Tamura M, Zülch KJ, Experimental microembolism of the brain, Neurosurg Rev 1: 111 (1978).CrossRefGoogle Scholar
  17. Vise WM, Schuier FJ, Hossmann KA, Takagi S, Zülch KJ, Cerebral microembolization, I. Pathophysiological studies, Arch Neurol 34: 660 (1977).CrossRefGoogle Scholar
  18. Warren J, Sacksteder MR, Thunin CA, Oxygen immunosuppression: modification of experimental allergic encephalomyelitis in rodents, J Immunol 121: 315 (1978).Google Scholar
  19. Zülch KJ, Hirnödem und Hirnschwellung, Virchows Arch (Pathol Anat) 310: 1 (1943).CrossRefGoogle Scholar
  20. Zülch KJ, Neuropathological aspects and histological criteria of brain edema and brain swelling, in: “Brain edema”, Klatzo I, Seitelberger F, eds., Springer, New York (1967).Google Scholar
  21. Zülch KJ, Cerebrovascular pathology and pathogenesis as a basis of neuroradiological diagnosis, in: “Handbuch der medizinischen Radiologie”, Vol. XIV, Part 1A, Diethelm L, Wende S, eds., Springer, Berlin (1981).Google Scholar
  22. Zülch KJ, Tzonos T, Transsudationsphänomene an den tiefen Hirnvenen nach Blockade von Arteriolen oder Kapillaren der Rinde durch Mikroembolien, Naturwissenschaften 51: 539 (1964).CrossRefGoogle Scholar
  23. Zülch KJ, Tzonos T, Transudation phenomena at the deep veins after blockage of arterioles and capillaries by micro-emboli, Bibl Anat 7: 279 (1965).Google Scholar
  24. Zülch KJ, Pakula H, Schuier F, Distant perivenous demyelination after microembolization of the brain, Neuropathol Appl Neurobiol 2: 163 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • K. J. Zülch
    • 1
  1. 1.Max-Planck-Institute for Neurological ResearchKöln 91Germany

Personalised recommendations