Systematic Search for Brain Resuscitation Potentials after Total Circulatory Arrest

  • Peter Safar
  • Per Vaagenes
Part of the NATO ASI Series book series (NSSA, volume 115)


In the 1970s, the concepts and techniques of cardiopulmonary resuscitation (CPR) were extended to cardiopulmonary-cerebral resuscitation (CPCR; 81). A systematic search for improved CPCR methods after cardiac arrest is important for socio-economic, medical and scientific reasons. About 25% of all deaths are the results of acute potentially reversible dying processes, in the absence of end-stage incurable disease and before natural dying from old age. The majority of such dying processes represent indications for CPCR attempts. Moreover, systematic CPCR research should not only lead to more effective therapies, but also to reliable information early post-arrest to predict persistent vegetative state and thereby help in deciding on whom to let die. Brain resuscitation research on complete isolated global brain ischemia (GBI) and total body circulatory arrest (TCA) might also benefit patients with severe shock, stroke, brain injury, brain hemorrhage, encephalitis, and organ preservation for transplantation. This paper is not a report of the authors’ new research data, but rather summarizes some methods, results and ideas primarily, but not exclusively of the authors’ groups.


Cardiac Arrest Mean Arterial Pressure Ventricular Fibrillation Brain Death Brain Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramson NS, Safar P, Detre K, et al, An international collaborative clinical study mechanism for resuscitation research, Resuscitation 10:141 (1982).Google Scholar
  2. 2.
    Abramson NS, Safar P, Detre K, et al, Results of a randomized clinical trial of brain resuscitation with thiopental, Anesthesiology 53:A101 (1983).Google Scholar
  3. 3.
    Aldrete JA, Romo-Salas F, Jankowsky L, et al, Effect of pretreatment with thiopental and phenytoin on postischemic brain damage in rabbits, Crit Care Med 7:466 (1979).Google Scholar
  4. 4.
    Ames A, Wright RL, Kowada M, et al, Cerebral ischemia. IL The noreflow phenomenon, Am J Pathol 52:437 (1968).Google Scholar
  5. 5.
    Ames A, Earliest irreversible changes during ischemia, Am J Emerg Med 1:139 (1983).Google Scholar
  6. 6.
    Amundsen E, Aspects of plasma kinin physiology, Scand J Clin Lab Invest 107:65 (1969).Google Scholar
  7. 7.
    Arfors KE, Hillered L, Oxygen radicals and biological injury, in: “Protection of tissue against hypoxia”, Wauquier A, et al., eds., Elsevier, Amsterdam (1982).Google Scholar
  8. 8.
    Astrup J, Symon L, Branton NM, Lassen NA, Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia, Stroke 8:51 (1977).Google Scholar
  9. 9.
    Baethmann A, Oettinger W, Rothenfusser W, Geiger R, Biochemical aspects of cerebral edema, in: “Pathophysiology of cerebral energy metabolism”, Mrsulja BB, Rakic LM, Klatzo I, Spatz M, eds., Plenum Press, New York (1979).Google Scholar
  10. 10a.
    Bar-Joseph G, Safar P, Stezoski WS, et al, A realistic hemorrhagic shock model in the monkey, Circ Shock 8:206 (1981; Abstract).Google Scholar
  11. 10b.
    Bar-Joseph G, Safar P, Stezoski WS, et al, Morrhagic shock in monkeys: CNS, pulmonary, hepatic and renal outcome, Anesthesiology 57:A97 (1982; Abstract).Google Scholar
  12. 10c.
    Bar-Joseph G, Safar P, Stezoski WS, et al, Stroma-free hemoglobin, hydroxyethyl starch, lactated Ringer’s, or blood, for severe prolonged hemorrhagic shock in monkeys, Crit Care Med 11:219 (1983; Abstract).Google Scholar
  13. 11.
    Bircher NG, Safar P, Cerebral preservation during cardiopulmonary resuscitation in dogs, Crit Care Med 13:185 (1985).Google Scholar
  14. 12.
    Bleyaert AL, Nemoto EM, Safar P, et al, Thiopental amelioration of brain damage after global ischemia in monkeys, Anesthesiology 49:390 (1978).Google Scholar
  15. 13.
    Bozhiev AA, Tolova SV, Trubina IE, Peculiar features of resuscitation with the use of extracorporeal circulation, Kardiologiia 14:101 (1974).Google Scholar
  16. 14.
    Bradford K, Experimental increase in intracranial pressure, Diseases Nervous System 25:46 (1964).Google Scholar
  17. 15.
    Breivik H, Safar P, Sands P, et al, Clinical feasibility trials of barbiturate therapy after cardiac arrest, Crit Care Med 6:228 (1978).Google Scholar
  18. 16.
    Brierley JB, Meldrum BS, Brown AW, The threshold and neuropathology of cerebral anoxic-ischemic cell change, Arch Neurol 29:367 (1973).Google Scholar
  19. 17.
    Cantadore R, Vaagenes P, Safar P, Stezoski W, Cardiopulmonary bypass for resuscitation after prolonged cardiac arrest in dogs, Ann Emerg Med 13:398 (1984; Abstract).Google Scholar
  20. 18.
    Cantadore R, Vaagenes P, Safar P, Oxygen utilization (cerebral arterio-venous oxygen gradients) after prolonged cardiac arrest in dogs, Circ Shock 13:69 (1984; Abstract).Google Scholar
  21. 19.
    Cantadore R, Vaagenes P, Safar P, Alexander H, Prolonged cardiovascular failure after cardiac arrest and cardiopulmonary resuscitation in dogs, Circ Shock 13:70 (1984; Abstract).Google Scholar
  22. 20.
    Cole S, Corday E, 4-minute limit for cardiac resuscitation, JAMA 161:1454 (1956).Google Scholar
  23. 21.
    Cowley RA, Trump BF, eds., “Pathophysiology of shock, anoxia, and ischemia”, Williams & Wilkins, Baltimore (1982).Google Scholar
  24. 22.
    Crowell JW, Jones CE, Smith EE, Effects of allopurinol on hemorrhagic shock, Am J Physiol 16:744 (1969).Google Scholar
  25. 23.
    Cullen JF, Aldrete JA, Jankowsky L, et al, Protective action of phenytoin in cerebral ischemia hypoxia, Anesth Analg 58:165 (1979).Google Scholar
  26. 24.
    Del Maestro RF, An approach to free radicals in medicine and biology, Acta Physiol Scand 492:153 (1980).Google Scholar
  27. 25.
    DeVenuto F Acellular oxygen-delivering resuscitation fluids, Crit Care Med 10:237 (1982).Google Scholar
  28. 26.
    Edgren E, Terent H, Hedstand U, et al, Cerebral spinal fluid markers in relation to outcome in patients with global cerebral ischemia, Crit Care Med 11:4 (1983).Google Scholar
  29. 27.
    Ekstrom-Jodal P, Haggendal E, Larsson LE, Cerebral blood flow and oxygen uptake in endotoxin shock. An experimental study in dogs, Acta Anaesth Scand 26:163 (1982).Google Scholar
  30. 28.
    Fisher E, Ames A, Studies on mechanisms of impairment of cerebral circulation following ischemia: effect of hemodilution and perfusion pressure, Stroke 3:538 (1973).Google Scholar
  31. 29.
    Freund H, Hoover HC, Atami S, Fischer JD, Infusion of branched chain amino acids in post-operative patients, Ann Surg 190:18 (1979).Google Scholar
  32. 30a.
    Garcia JH, Kalimo H, Kamijyo Y, et al, Cellular events during partial cerebral ischemia. Part I: Electron microscopy of feline cerebral cortex after middle-cerebral artery occlusion, Virchows Archiv B Cell Pathology 25:191 (1977).Google Scholar
  33. 30b.
    Garcia JH, Kalimo H, Kamijyo Y, et al, The ultrastructure of “brain death”, Virchows Archiv B Cell Pathology 25:207 (1977).Google Scholar
  34. 31.
    Gisvold SE, Safar P, Rao G, et al, Multifaceted therapy after global brain ischemia in pigtail monkeys, Stroke 15:803 (1984).Google Scholar
  35. 32.
    Gisvold SE, Safar P, Rao G, et al, Prolonged immobilization and controlled ventilation after global brain ischemia in monkeys, Crit Care Med 12:171 (1984).Google Scholar
  36. 33.
    Gisvold SE, Safar P, Hendrickx H, et al, Thiopental treatment after global brain ischemia in pigtail monkeys, Anesthesiology 60:88 (1984).Google Scholar
  37. 34.
    Gisvold SE, Safar P, Systematic studies of cerebral resuscitation potentials after global brain ischemia, Crit Care Med 10:466 (1982).Google Scholar
  38. 35.
    Gisvold SE, Steen PA, et al, Nimodipine improves neurologic recovery after global head ischemia in monkeys, Personal communication (see Steen PA et al, Anesthesiology 62:406 (1985)).Google Scholar
  39. 36.
    Gurland JH, Heinze V, Lee HA, eds., “Therapeutic plasma exchange”, Springer, New York (1981).Google Scholar
  40. 37.
    Gurvitch AM, Determination of the depth and reversibility of post-anoxic coma in animals, Resuscitation 3:1 (1974).Google Scholar
  41. 38.
    Hallenbeck JM, Leitch DR, Dutka AJ, et al, Prostaglandin I2, indo-methacin, and heparin promote postischemic neuronal recovery in dogs, Ann Neurol 12:145 (1982).Google Scholar
  42. 39.
    Hayes RL, Pechura CM, Becker DP, A head injury animal model: physiological studies of mechanical brain injury in the cat, J World Assoc Emerg Disaster Med 1:Suppl. (1985).Google Scholar
  43. 40.
    Hedenberg L, Studies on iron metabolism with desferrioxamine in man, Scand J Haematol 6, (1969).Google Scholar
  44. 41.
    Hendrickx H, Rao GR, Safar P, et al, Asphyxia, cardiac arrest and resuscitation in rats. I. Short-term recovery, Resuscitation 12:97 (1984).Google Scholar
  45. 42.
    Hendrickx H, Asphyxia, cardiac arrest and resuscitation in rats. II. Long-term behavioural changes. Resuscitation 12:117 (1984).Google Scholar
  46. 43.
    Hosobuchi Y, Baskin DS, Woo SK, Reversal of postischemic neurologic deficit in gerbils by the opiate antagonist naloxone, Science 215:69 (1982).Google Scholar
  47. 44.
    Hossmann KA, Treatment of experimental cerebral ischemia, J Cereb Blood Flow Metabol 2:275 (1982).Google Scholar
  48. 45.
    Hossmann KA, Kleihues P, Reversibility of ischemic brain damage, Arch Neurol 29:375 (1973).Google Scholar
  49. 46.
    Jackson DL, Dole WP, McGloin J, et al, Total cerebral ischemia: Application of a new model system to studies of cerebral micro-circulation, Stroke 12:66 (1981).Google Scholar
  50. 47.
    Jennett B, Bond M, Assessment of outcome after severe brain damage: a practical scale, Lancet 1:480 (1975).Google Scholar
  51. 48.
    Kampschulte S, Smith J, Safar P, Oxygen transport after cardiopulmonary resuscitation, Anaesthesiology and Resuscitation 30:95 (1969).Google Scholar
  52. 49.
    Kaplan BC, Civetta JM, Nagel EL, et al, The military anti-shock trouser in civilian pre-hospital emergency care, J Trauma 13:843 (1973).Google Scholar
  53. 50.
    Katz L, Vaagenes P, Safar P, et al, Protective and resuscitative properties of methylprednisolone in asphyxial cardiac arrest in rats, Anesthesiology (1985, in press).Google Scholar
  54. 51.
    Kirimli B, Kampschulte S, Safar P, Cardiac arrest from exsanguination in dogs. Evaluation of resuscitation methods, Acta Anaesth Scand (suppl.) 39:183 (1969).Google Scholar
  55. 52.
    Klatzo I, Neuropathological aspects of brain edema, J Neuropathol Exper Neurol 26:1 (1967).Google Scholar
  56. 53.
    Kraven T, Rush BF, Gosh A, et al, Correlation of survival and metabolic response produced by ATP-MgC12 in hemorrhagic shock, Circ Shock 6:186 (1979).Google Scholar
  57. 54.
    Langfitt TW, Tannenbaum HM, Cassell NF, et al, Acute intracranial hypertension, cerebral blood flow and EEG, Electroenceph Clin Neurophysiol 20: 139 (1960).Google Scholar
  58. 55.
    Lee SK, Vaagenes P, Safar P, et al, Effect of cardiac arrest time on the cortical cerebral blood flow generated by subsequent standard external cardiopulmonary resuscitation in rabbits Anesthesiology (1985, in press).Google Scholar
  59. 56.
    Levine S, Anoxic-ischemic encephalopathy in rats, Am J Pathol 36:1 (1960).Google Scholar
  60. 57.
    Lin SR, O’Connor MJ, Fischer HW, et al, The effect of combined dextran and streptokinase on cerebral function and blood flow after cardiac arrest: an experimental study in the dog, Invest Radiol 13:490 (1978).Google Scholar
  61. 58.
    Lind B, Snyder J, Kampschulte S, Safar P, A review of total brain ischemia models in dogs and original experiments on clamping the aorta, Resuscitation 4:19 (1975).Google Scholar
  62. 59.
    Marshall LF, Shapiro HM, Rauscher A, et al, Pentobarbital therapy for intracranial hypertension in metabolic coma: Reye’s syndrome, Crit Care Med 1:293 (1973).Google Scholar
  63. 60.
    Michenfelder JK, Theye RA, The effects of anesthesia and hypothermia on canine cerebral ATP and lactate during anoxia produced by decapitation, Anesthesiology 33:430 (1970).Google Scholar
  64. 61.
    Miller JD, Barbiturate and raised intracranial pressure, Ann Neurol 6:189 (1979).Google Scholar
  65. 62.
    Miller JR, Myers RE, Neuropathology of systemic circulatory arrest in adult monkeys, Neurology 22:888 (1972).Google Scholar
  66. 63.
    Miyake T, Kinoshita K, Ishii N, et al, First report of an experimental study in dogs of cerebral cardiopulmonary resuscitation (CCPR), Resuscitation 10:105 (1982).Google Scholar
  67. 64.
    Mullie A, Lust P, Penninckx J, et al, Monitoring of cerebrospinal fluid enzyme levels in post-ischemic encephalopathy after cardiac arrest, Crit Care Med 5:399 (1981).Google Scholar
  68. 65.
    Negovsky VA, Gurvitch AM, Zolotokrylina ES, “Postresuscitation Disease”, Elsevier, Amsterdam (1983).Google Scholar
  69. 66.
    Nemoto EM, Shiu G, Alexander H, Brain free fatty acids during decapitation ischemia in awake and pentobarbital anesthetized rats, Fed Proc 39:407 (1980).Google Scholar
  70. 67.
    Nemoto EM, Pathogenesis of cerebral ischemia-anoxia, Crit Care Med 6:203 (1978).Google Scholar
  71. 68.
    Nemoto EM, Frinak S, Rat brain tissue PO2 after 16 min global ischemia and thiopental therapy, Crit Care Med 6:113 (1978).Google Scholar
  72. 69.
    Nemoto EM, Bleyaert AL, Stezoski SW, et al, Global brain ischemia: A reproducible monkey model, Stroke 8:558 (1977).Google Scholar
  73. 70.
    Otto CW, Yakaitis RW, Ewy GA, Spontaneous ischemic ventricular fibrillation in dogs: a new model for the study of cardiopulmonary resuscitation, Crit Care Med 11:883 (1983).Google Scholar
  74. 71.
    Parks DA, Bulkley GB, Granger DN, Role of oxygen derived free radicals in digestive tract diseases, Surgery 94:415 (1983).Google Scholar
  75. 72.
    Plum F, Symposium on the threshold and mechanisms of anoxicischemic brain injury, Arch Neurol 29:359 (1973).Google Scholar
  76. 73.
    Pulsinelli W, Brierley J, Plum F, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann Neurol 11:491 (1982).Google Scholar
  77. 74.
    Raichle ME, The pathophysiology of brain ischemia, Ann Neurol 13:2 (1983).Google Scholar
  78. 75.
    Redding J, Cozine RA, Voigt GC, et al, Resuscitation from drowning, JAMA 178:1136 (1961).Google Scholar
  79. 76.
    Redding JS, Pearson JW, Resuscitation from asphyxia, JAMA 182: 283 (1962).Google Scholar
  80. 77.
    Redding JS, Pearson JW, Resuscitation from ventricular fibrillation, JAMA 203:93 (1968).Google Scholar
  81. 78.
    Rehncrona S, Rosen I, Siesjö BK, Excessive cellular acidosis: an important mechanism of neuronal damage in the brain?, Acta Physiol Scand 110:435 (1980).Google Scholar
  82. 79.
    Rosomoff HL, Shulman K, Raynor R, et al, Experimental brain injury and delayed hypothermia, Surg Gynecol Obstet 110:27 (1960).Google Scholar
  83. 80.
    Safar P, Gisvold SE, Vaagenes P, et al, Long-term animal models for the study of global brain ischemia, in: “Protection of tissues against hypoxia”, Wauquier, et al, eds., Elsevier, Amsterdam (1982), also: Crit Care Med (1985, in press).Google Scholar
  84. 81.
    Safar P, Cardiopulmonary cerebral resuscitation. A manual for physicians and paramedical instructors. World Federation of Societies of Anaesthesiologists. Laerdal, Stavanger; W.B. Saunders, Philadelphia (1981).Google Scholar
  85. 82.
    Safar P, Resuscitation after brain ischemia, in: “Brain failure and resuscitation”, Grenvik A, Safar P, eds., Clinics in Critical Care Medicine. Churchill Livingstone, New York (1981).Google Scholar
  86. 83.
    Safar P, eds., “Special symposium issue. Brain resuscitation”, Crit Care Med 6:199 (1978).Google Scholar
  87. 84.
    Safar P, Stezoski W, Nemoto EM, Amelioration of brain damage after 12 minutes cardiac arrest in dogs, Arch Neurol 33:91 (1976).Google Scholar
  88. 85.
    Schuier F, Orzi F, Sokoloff L, Brain edema and mortality after cerebral ischemia in the gerbil, J Cereb Blood Flow Metabol 3:S339 (1983).Google Scholar
  89. 86.
    Schultz HW, Day EA, Sinnbauer RO, eds., “Lipids and their oxidation”, Avi, Westport CN (1962).Google Scholar
  90. 87.
    Sharp AA, Warren BA, Paxton AM, et al, Anticoagulant therapy with a purified fraction of Malayan pit viper venom, Lancet 1:493 (1968).Google Scholar
  91. 88.
    Siebke H, Rod T, Breivik H, et al, Survival after 40 minutes submersion without cerebral sequelae, Lancet 1:1275 (1975).Google Scholar
  92. 89.
    Siesjö BK, Cell damage in the brain: A speculative synthesis, J Cereb Blood Flow Metabol 1:155 (1981).Google Scholar
  93. 90.
    Sloviter HA, Petokovic M, Ogoshi S, et al, Dispersed fluorochemicals as substitutes for erythrocytes in intact animals, J Appl Physiol 27:666 (1969).Google Scholar
  94. 91.
    Smith J, Penninckx JJ, Kampschulte S, et al, Need for oxygen enrichment in myocardial infarction, shock and following cardiac arrest, Acta Anaesth Scand 29:127 (1968).Google Scholar
  95. 92.
    Snyder JV, Nemoto EM, Carroll RG, et al, Global ischemia in dogs: Intracranial pressure, brain blood flow and metabolism, Stroke 6:21 (1975).Google Scholar
  96. 93.
    Stajduhar K, Steinberg R, Sotosky M, Safar P, Stezoski SW, Cerebral blood flow and common carotid artery blood flow during open chest cardiopulmonary resuscitation in dogs, Anesthesiology 59:A117 (1983).Google Scholar
  97. 94.
    Steen PA, Newberg LS, Milde JH, et al, Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemia in the dog, J Cereb Blood Flow Metabol 3:38 (1983).Google Scholar
  98. 95.
    Stewart GN, Guthrie C, Burns RL, Pike H, The resuscitation of the central nervous system of mammals, J Experimental Med 8:289 (1906).Google Scholar
  99. 96.
    Stuliken EH, Sokol MD, The effects of heparin on recovery from ischemic brain injuries in cats, Anesth Analg 55:683 (1976).Google Scholar
  100. 97.
    Symon L, et al, Physiological responses of local areas of the cerebral circulation in experimental primates determined by the method of hydrogen clearance, Stroke 4:632 (1973).Google Scholar
  101. 98.
    Takaori M, Safar P, Treatment of massive hemorrhage with colloid and crystalloid solutions, JAMA 199:297 (1967).Google Scholar
  102. 99.
    Teasdale G, Jennett B, Assessment of coma and impaired consciousness. A practical scale, Lancet 2:81 (1974).Google Scholar
  103. 100.
    Todd MM, Chadwick HS, Shapiro HM, et al, The neurologic effects of thiopental therapy following experimental cardiac arrest in cats, Anesthesiology 57:76 (1982).Google Scholar
  104. 101.
    Todd MM, Dunlop BJ, Shapiro HM, et al, Ventricular fibrillation in the cat: a model for global cerebral ischemia, Stroke 12:808 (1981).Google Scholar
  105. 102.
    Vaagenes P, Cantadore R, Safar P, et al, Amelioration of brain damage by lidoflazine after prolonged ventricular fibrillation cardiac arrest in dogs, Crit Care Med 12:846 (1984).Google Scholar
  106. 103.
    Vaagenes P, Kjekshus JK, Torvik A, The relationship between cerebrospinal fluid creatine-kinase and morphological changes in the brain after transient cardiac arrest, Circulation 61:1194 (1980).Google Scholar
  107. a. Vaagenes P, Safar P, Cantadore R, et al, Amelioration of brain damage with a free radical scavenger solution after asphyxial cardiac arrest in dogs, (submitted).Google Scholar
  108. 104.
    Wise BL, Chater M, Use of hypertonic mannitol solution to lower CSF pressure and decrease brain bulk in man, Surg Forum 12:398 (1961).Google Scholar
  109. 105.
    Welsh SA, O’Connor MJ, Marcy VR, et al, Factors limiting regeneration of ATP following temporary ischemia in cat brain, Stroke 13:234 (1982).Google Scholar
  110. 106.
    White B, Winegar CD, Wilson RF, et al, Possible role of calcium blockers in cerebral resuscitation: a review of the literature and synthesis for future studies, Crit Care Med 11:202 (1983).Google Scholar
  111. 107.
    White BC, Gadzinski DS, Hoehner PJ, et al, Effect of flunarizine on canine cerebral cortical blood flow and vascular resistance post cardiac arrest, Ann Emerg Med 11:119 (1982).Google Scholar
  112. 108.
    White RJ, Hypothermic preservation and transplantation of brain, Resuscitation 1:197 (1975).Google Scholar
  113. 109.
    Winegar CP, Henderson O, White BC, et al, Early amelioration of neurologic deficit by lidoflazine after fifteen minutes of cardiopulmonary arrest in dogs, Ann Emerg Med 12:471 (1983).Google Scholar
  114. 110.
    Yatsu FM, Diamond I, Graziana C, et al, Experimental brain ischemia: protection from irreversible damage with a rapid acting barbiturate (methohexital), Stroke 3:726 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Peter Safar
    • 1
  • Per Vaagenes
    • 1
  1. 1.Resuscitation Research Center and Department of Anesthesiology/Critical Care Medicine, and the Presbyterian-University HospitalUniversity of PittsburghPittsburghUSA

Personalised recommendations