Advertisement

Recent Advances in the Study of Cerebrovascular Receptors

  • Maria Spatz
Part of the NATO ASI Series book series (NSSA, volume 115)

Abstract

The possibility of monoamines interaction with vascular elements in the brain under pathological conditions leading to an altered cerebro-vascular function and secondary brain injury was postulated at the time of limited knowledge about their respective receptors (33). The confirmation of this concept has been hindered by the difficulties of studying the regulatory mechanisms of the noticeably inaccessible vascular bed. Needless to say that direct proof of receptors present in the vessels and particularly in the microvessels of the brain has lingered beyond those described in the peripheral vasculature. For a long time it was thought that the cerebral arteries lack reactivities to nervous and pharmacological stimuli, even though the presence of nerve fibers in cerebral arteries was already described centuries ago by Willis. Subsequently, this opinion was overturned by electronmicroscopic, histochemical and specific immunocytochemical evidence of an existing perivascular innervation (4,6,9,11,16,17,29,36,39,43).

Keywords

Cerebral Blood Flow Cerebral Artery Adenylate Cyclase Vasoactive Intestinal Polypeptide Cereb Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    d’Alayer J, Berthillier G, Monneron A, Structure of brain adenylate cyclase: Proteolysis-dependent modifications, Biochem 22: 3948 (1983).CrossRefGoogle Scholar
  2. 2.
    Bevan JA, The human adrenergic neurovascular mechanism, Gen Pharmac 14: 21 (1983).CrossRefGoogle Scholar
  3. 3.
    Chan-Palay V, Innervation of cerebral blood vessels by norepinephrine, indoleamine, substance P and neurotensin fibers and leptomeningeal indoleamine axons: Their roles in vasomotor activity and local alterations of brain blood composition, in: “Neurogenic control of the brain circulation”, Owman C, and Edvinsson L, eds., Pergamon Press, Oxford (1977).Google Scholar
  4. 4.
    Cervos-Navarro J, The structural basis of an innervatory system of brain vessels, in: “Neurogenic control of the brain circulation”, Owman C, Edvinsson L, eds., Pergamon Press, Oxford (1977).Google Scholar
  5. 5.
    Cvejic V, Micic DV, Djuricic BM, Mrsulja BJ, Mrsulja BB, Monoamines and related enzymes in cerebral cortex and basal ganglia following transient ischemia in gerbils, Acta Neuropathol 51: 71 (1980).CrossRefGoogle Scholar
  6. 6.
    Dahl E, Innervation of the cerebral arteries, J Anat 115: 53 (1973).Google Scholar
  7. 7.
    Edvinsson L, Owman C, Pharmacological characterization of adrenergic alpha and beta receptors mediating the vasomotor responses of cerebral arteries in vitro, Circulation Res 35: 835 (1974).Google Scholar
  8. 8.
    Edvinsson L, Neurogenic mechanisms in the cerebrovascular bed. Autonomic nerves, amine receptors and their effect on cerebral blood flow, Acta Physiol Scand (Suppl.) 427: 1 (1975).Google Scholar
  9. 9.
    Edvinsson L, Owman C, Sjöberg NO, Autonomic nerves, mast cells, and amine receptors in human brain vessels. A histochemical and pharmacological study, Brain Res 115: 377 (1976).Google Scholar
  10. 10.
    Edvinsson L, Owman C, Pharmacological characterization of post-synaptic vasomotor receptors in brain vessels, in: “Neurogenic control of the brain circulation”, Owman C, Edvinsson L, eds., Pergamon Press, Oxford (1977).Google Scholar
  11. 11.
    Edvinsson L, Fahrenkrug J, Hanko J, McCulloch J, Owman C, Uddman R, Vasoactive intestinal polypeptide: Distribution and effects on cerebral blood flow and metabolism, in: “Cerebral microcirculation and metabolism”, Cervos-Navarro J, Fritschka E, eds., Raven Press, New York (1981).Google Scholar
  12. 12.
    Estrada C, Krause DN, Muscarinic cholinergic receptor sites in cerebral blood vessels, J Pharm Exp Ther 221: 85 (1982).Google Scholar
  13. 13.
    Estrada C, Hamel E, Krause DN, Biochemical evidence for cholinergic innervation of intracerebral blood vessels, Brain Res 266: 261 (1983)CrossRefGoogle Scholar
  14. 14.
    Grammas P, Diglio CA, Marks BH, Giacomelli F, Wiener J, Muscarinic receptors in rat cerebral cortical microvessels, Fed Proc 41: 451 (1982).Google Scholar
  15. 15.
    Gross PM, Harper AM, Teasdale GM, Cerebral circulation and histamine: 1. Participation of vascular H1 - and H2 -receptors in vasodilatatory responses to carotid arterial infusion, J Cereb Blood Flow Metabol 1: 97 (1981).CrossRefGoogle Scholar
  16. 16.
    Falck B, Mchedlishvili GI, Owman C, Histochemical demonstration of adrenergic nerves in cortex-pia of rabbit, Acta Pharmac Tox 23: 133 (1965).CrossRefGoogle Scholar
  17. 17.
    Hartman BK, Swanson LW, Raichle ME, Preskorn SH, Clark HB, Central adrenergic regulation of cerebral microvascular permeability and blood flow; anatomic and physiologic evidence, Adv Exp Med Biol 131: 113 (1980).CrossRefGoogle Scholar
  18. 18.
    Harik SI, Sharma VK, Wetherbee JR, Warren RH, Banerjee SP, Adrenergic and cholinergic receptors of cerebral microvessels, J Cereb Blood Flow Metabol 1: 329 (1981).CrossRefGoogle Scholar
  19. 19.
    Herbst TJ, Raichle ME, Ferrendelli JA, ß-adrenergic regulation of adenosine 3’,5’-monophosphate concentration in brain microvessels, Science 204: 330 (1979).CrossRefGoogle Scholar
  20. 20.
    Huang M, Hanley DA, Rurstad OP, Parathyroid hormone stimulates adenylate cyclase in rat cerebral microvessels, Life Sci 32: 1009 (1983).CrossRefGoogle Scholar
  21. 21.
    Huang M, Rorstad OP, Effects of vasoactive intestinal polypeptide, monoamines, prostaglandins, and 2-chloroadenosine on adenylate cyclase in rat cerebral microvessels, J Neurochem 40: 719 (1983).CrossRefGoogle Scholar
  22. 22.
    Joo F, Rakonczay Z, Wollemann M, cAMP-mediated regulation of the permeability in the brain capillaries, Experimentia 31: 582 (1975).CrossRefGoogle Scholar
  23. 23.
    Johansson BB, Effect of beta-adrenoreceptor antagonists on the increased cerebrovascular permeability to protein induced by amphetamine, Progr Neuro-Psychopharmacol 2: 529 (1978).CrossRefGoogle Scholar
  24. 24.
    Iyengar R, Birnbaumer L, Agonist-specific desensitization: Molecular locus and possible mechanism, in: “Advances in cyclic nucleotide research, Vol. 14”, Dumont JE, Greengard P, Robison GA, eds., Raven Press, New York (1981).Google Scholar
  25. 25.
    Karnushina IL, Palacios JM, Barbin G, Dux E, Joo F, Schwartz JC, Studies on a capillary-rich fraction isolated from brain: Histaminic components and characterization of the histamine receptors linked to adenylate cyclase, J Neurochem 34: 1201 (1980).CrossRefGoogle Scholar
  26. 26.
    Karnushina IL, Spatz M, Bembry J, Cerebral endothelial cell culture I The presence of ß2 and a2 -adrenergic receptors linked to adenylate cyclase activity, Life Sci 30: 849 (1982).CrossRefGoogle Scholar
  27. 27.
    Karnushina IL, Spatz M, Bembry J, Cerebral endothelial cell culture II Adenylate cyclase response to prostaglandins and their interaction with the adrenergic system, Life Sci 32: 1427 (1983).CrossRefGoogle Scholar
  28. 28.
    Kobayashi H, Maoret T, Spano PF, Trabucchi M, Effect of age on 13- adrenergic receptors on cerebral microvessels, Brain Res 244: 374 (1982).CrossRefGoogle Scholar
  29. 29.
    Larsson LI, Edvinsson L, Fahrenkrug J, Hakanson R, Owman C, Schaffalitzky de Muckadell O, Sundler F, Immunohistochemical localization of a vasodilatory polypeptide (VIP) in cerebrovascular nerves, Brain Res 113: 400 (1976).CrossRefGoogle Scholar
  30. 30.
    Lefkowitz RJ, De Lean A, Hoffman BB, Stadel JM, Kent R, Michel T, and Limbird L, Molecular pharmacology of adenylate cyclasecoupled a-and ß-adrenergic receptors, in: “Advances in cyclic nucleotide research, Vol. 14”, Dumont JE, Greengard P, Robison GA, eds., Raven Press, New York (1981).Google Scholar
  31. 31.
    Marin J, Rivilla F, Nerve endings and pharmacological receptors in cerebral vessels, Gen Pharmac 13: 361 (1982).CrossRefGoogle Scholar
  32. 32.
    Maruki C, Spatz M, Ueki Y, Nagatsu I, Bembry J, Cerebrovascular endothelial cell culture: Metabolism and synthesis of 5-hydroxytryptamine, J Neurochem 43: 316 (1984).CrossRefGoogle Scholar
  33. 33.
    Moskowitz MA, Wurtman RJ, Catecholamines and neurologic diseases, N Engl J Med 293: 332 (1975).CrossRefGoogle Scholar
  34. 34.
    Mrsulja BB, Mrsulja BJ, Spatz M, Klatzo I, Action of cerebral ischemia on decreased levels of 3-methoxy-4-hydroxyphenethylglycol sulphate, homovanillic acid and 5-hydroxyindolacetic acid produced by pargyline, Brain Res 98: 388 (1975).CrossRefGoogle Scholar
  35. 35.
    Nathanson JA, Glaser GH, Identification of ß-adrenergic-sensitive adenylate cyclase in intracranial blood vessels, Nature 278: 567 (1979).CrossRefGoogle Scholar
  36. 36.
    Nelson E, Rennels M, Innervation of intracranial arteries, Brain 93: 475 (1970).CrossRefGoogle Scholar
  37. 37.
    Osterholm JL, Bell J, Meyer R, Pyenson J, Experimental effects of free serotonin on the brain and its relation to brain injury, J Neurosurg 31: 408 (1969).CrossRefGoogle Scholar
  38. 38.
    Owman C, Edvinsson L, Hardebo JE, Gröschel-Stewart U, Unsicker K, and Walles B, Immunohistochemical demonstration of actin and myosin in brain capillaries, Acta Physiol Scand (Suppl.) 452: 69 (1977).Google Scholar
  39. 39.
    Owman C, Autonomic innervation of blood vessels with special emphasis on human cerebrovascular nerves and corresponding amine receptors, Gen Pharmac 14: 17 (1983).CrossRefGoogle Scholar
  40. 40.
    Palmer GC, Palmer SJ, Chronister RB, Cyclic nucleotide systems in the microcirculation of mammalian brain, in: “The cerebral microvasculature”, Eisenberg HM, Suddith RL, eds., Academic Press, New York (1980).Google Scholar
  41. 41.
    Peroutka SJ, Moskowitz MA, Reinhard JF, Snyder SH, Neurotransmitter receptor binding in bovine cerebral microvessels, Science 208: 610 (1980).CrossRefGoogle Scholar
  42. 42.
    Raichle ME, Grubb Jr RL, Eichung JO, Neural and hormonal regulation of brain water permeability, in: “Neurogenic control of the brain circulation”, Owman C, Edvinsson L, eds., Pergamon Press Oxford (1977).Google Scholar
  43. 43.
    Reinhard JF, Liebmann JE, Schlossberg AJ, Moskowitz MA, Serotonin neurons project to small blood vessels in the brain, Science 106: 85 (1979).CrossRefGoogle Scholar
  44. 44.
    Sercombe R, Aubineau P, Edvinsson L, Mamo H, Owman C, Pinard E, and Seylaz J, Neurogenic influence on local cerebral blood flow. Effect of catecholamines or sympathetic nerve stimulation as correlated with the sympathetic innervation, Neurology 25: 954 (1975).CrossRefGoogle Scholar
  45. 45.
    Spatz M, Mrsulja BB, Progress in cerebral microvascular studies related to the function of the blood-brain barrier, in: “Advances in cellular neurobiology, Vol. 3”, Federoff S, Hertz L, eds., Academic Press, New York (1982).Google Scholar
  46. 46.
    Spatz M, Nagatsu I, Maruki C, Yoshida M, Kondo Y, Bembry J, The presence of phenylethanolamine-N-methyltransferase in cerebral microvessels and endothelial cultures, Brain Res 240: 191 (1982).CrossRefGoogle Scholar
  47. 47.
    Spatz M, Maruki C, Karnushina I, Nagatsu I, Bembry J, Merkel N, The relationship of monoamines to the blood-brain barrier, in: “Advances in the biosciences, Vol. 43, Stroke: Animal models”, Stefanovich V, ed., Pergamon Press, New York (1983).Google Scholar
  48. 48.
    Spatz M, Maruki C, Nagatsu I, Ueki Y, Wroblewska B, Mocarski E, Merkel N, Bembry J, Recent progress in the studies related to cerebral microvascular function, J Cereb Blood Flow Metabol 3: S311 (1983).CrossRefGoogle Scholar
  49. 49.
    Suddith RL, Savage KE, Eisenberg HM, Ultrastructural and histochemical studies of cerebral capillary synapse, in: The cerebral microvasculature“, Eisenberg HM, Suddith RL, eds., Plenum, New York (1980).Google Scholar
  50. 50.
    Wolfe LS, Ng Ying Kin NMK, Spatz M, Metabolites of arachidonic acid after calcium ionophore stimulation of cultured cerebral capillary endothelial cells and brain tissue: Identification of lipoxygenase products, J Neurochem 41: S40 (1983).Google Scholar
  51. 51.
    Wroblewska B, Spatz M, Merkel N, Bembry J, Cerebrovascular smooth muscle culture. II. Characterization of adrenergic receptors linked to adenylate cyclase, Life Sci 34: 783 (1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Maria Spatz
    • 1
  1. 1.Laboratory of Neuropathology and Neuroanatomical SciencesNINCDS, National Institutes of HealthBethesdaUSA

Personalised recommendations