Advertisement

Role of Synaptic Transmission Failure in the Neurologic Deficit of Ischemic Brain Injury

  • Edwin M. Nemoto
  • M. R. Lin
  • G. K. Shiu
  • E. Ragupathy
Part of the NATO ASI Series book series (NSSA, volume 115)

Abstract

The successful care, treatment and prognosis of patients suffering cerebral insults depend upon a thorough understanding of the factors and mechanisms leading to the ultimate neurologic deficit. Past studies have revealed several major facets in the pathogenesis of cerebral ischemicanoxic injury. First, the degree of the neurologic deficit sustained depends upon not only the initial insult but also the pathological processes developing post-insult that aggravate and extend the injury. These are among others the no-reflow phenomenon, delayed postischemic hypo-perfusion and hypermetabolism, free-radical generation, and lipid peroxidation. Second, the degree of the neurologic deficit sustained may be attributable not only to irreversible neuronal necrosis, but also to a — possibly reversible — failure of synaptic transmission without failure of oxidative phosphorylation. Finally, most recent studies suggest that the evolution of ischemic brain damage may be related to a release of free fatty acids (FFA) from membrane phospholipids (PL). Membrane PLs are likely to be involved in membrane transduction processes of synaptic transmission, namely channel gating, membrane-bound enzyme activities, such as adenylate cyclase, phosphodiesterases, and receptor sensitivity. Our intent is to present evidence that failure of synaptic transmission could contribute to the neurologic dysfunction of ischemic brain injury.

Keywords

Synaptic Transmission Adenylate Cyclase Ischemic Brain Injury Ischemic Brain Damage Respiratory Control Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hinzen DH, Müller U, Sobotka P, Genert E, Lang R, Hirsch H, Metabolism and function of dog’s brain recovering from longtime ischemia, Am J Physiol 223: 1158 (1972).Google Scholar
  2. 2.
    Brown RM, Carlsson A, Ljunggren B, Siesjö BK, Snider SR, Effect of ischemia on monoamine metabolism in the brain, Acta Physiol Scand 90: 789 (1974).CrossRefGoogle Scholar
  3. 3.
    Calderini G, Carlsson A, Nordström CH, Influence of transient ischemia on monoamine metabolism in the rat brain during nitrous oxide and phenobarbitone anaesthesia, Brain Res 157: 303 (1978).CrossRefGoogle Scholar
  4. 4.
    Glick SD, Zimmerberg B, Pharmacological modification of brain lesion syndromes, in: “Recovery from brain damage, research and theory”, Finger S, ed., Plenum Press, New York (1978).Google Scholar
  5. 5.
    Schutz H, Silverstein PR, Vapalahti M, Bruce DA, Mela L, Langfitt T, Brain mitochrondrial function after ischemia and hypoxia. I. Ischemia induced by increased intracranial pressure, Arch Neurol 29: 408 (1973).CrossRefGoogle Scholar
  6. 6.
    Rehncrona S, Mela L, Siesjö BK, Recovery of brain mitochondrial function in the rat after complete and incomplete cerebral ischemia, Stroke 10: 437 (1979).CrossRefGoogle Scholar
  7. 7.
    Siesjö BK, Brain energy metabolism, John Wiley & Sons, New York (1978).Google Scholar
  8. 8.
    Grossman RG, Williams V, Electrical activity and ultrastructure of cortical neurons and synapses in ischemia, in: “Brain hypoxia”, Brierley JB, Meldrum BS, Lippincott JP, Lippincott Co., Philadelphia (1971).Google Scholar
  9. 9.
    Meyer JS, Stoica E, Pascu I, Shimazu K, Hartmann A, Catecholamine concentrations in CSF and plasma of patients with cerebral infarction and haemorrhage, Brain 36: 277 (1973).CrossRefGoogle Scholar
  10. 10.
    Meyer JS, Okamoto S, Shimazu K, Koto A, Ohuchi T, Sari A, Ericsson AD, Cerebral metabolic changes during treatment of subacute cerebral infarction by alpha and beta adrenergic blockade with phenoxybenzamine and propranolol, Stroke 5: 180 (1974).CrossRefGoogle Scholar
  11. 11.
    Mrsulja BB, Mrsulja BJ, Spatz M, Ito U, Walker JT Jr., Klatzo I, Experimental cerebral ischemia in mongolian gerbils, IV. Behaviour of biogenic amines, Acta Neuropath 36: 1 (1976).CrossRefGoogle Scholar
  12. 12.
    Welch KMA, Chabi E, Buckingham J, Bergin B, Achar VS, Meyer JS, Catecholamine and 5-hydroxytryptamine levels in ischemic brain, Stroke 8: 341 (1977).CrossRefGoogle Scholar
  13. 13.
    Kogure K, Scheinberg P, Kishikawa H, Busto R, The role of monoamines and cyclic AMP in ischemic brain edema, in: “Dynamics of brain edema”, Pappius HM, Feindel W, eds., Springer-Verlag, Berlin (1976).Google Scholar
  14. 14.
    Strang RHC, Estimation of Km values of enzymes requiring molecular 0, as a substrate, Biochem J Letters 193: 1033 (1981).Google Scholar
  15. 15.
    Davis JN, Carlsson A, The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain, J Neurochem 21: 783 (1973).CrossRefGoogle Scholar
  16. 16.
    Lin MR, Henteleff HB, Nemoto EM, Noradrenalin-inducible cyclic-AMP accumulation in rat cerebral cortex: Changes during complete global ischemia, J Neurochem 40: 595 (1983).CrossRefGoogle Scholar
  17. 17.
    Lin MR, Nemoto EM, Kessler PD, Alterations in whole brain cyclic-AMP and cerebral cortex NA-inducible cyclic-AMP in rats during and after complete global ischemia, in: “Brain protection-morphological, pathophysiological and clinical aspects”, Wiedemann K, Hoyer S, eds., Springer Verlag, New York (1983).Google Scholar
  18. 18.
    Schwartz JP, Mrsulja BB, Mrsulja BJ, Passonneau JV, Klatzo I, Alterations of cyclic nucleotide-related enzymes and ATPase during unilateral ischemia and recirculation in gerbil cerebral cortex, J Neurochem 27: 101 (1976).CrossRefGoogle Scholar
  19. 19.
    Strong AJ, Tomlinson BE, Venables GS, Gibson G, Hardy JA, The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat: 2. Studies of histopathology, water content, and in vitro neurotransmitter uptake, J Cerebral Blood Flow Metab 3: 97 (1983).CrossRefGoogle Scholar
  20. 20.
    Weinberger J, Cohen G, Nerve terminal damage in cerebral ischemia: Greater susceptibility of catecholamine nerve terminals relative to serotonin nerve terminals, Stroke 14: 986 (1983).CrossRefGoogle Scholar
  21. 21.
    Pastuszko A, Wilson DF, Erecinska M, Neurotransmitter metabolism in rat brain synaptosomes: Effect of anoxia and pH, J Neurochem 38: 1657 (1982).CrossRefGoogle Scholar
  22. 22.
    Shiu GK, Nemmer JP, Nemoto EM, Reassessment of brain free fatty acid liberation during global ischemia and its attenuation by barbiturate anesthesia, J Neurochem 40: 880 (1983).CrossRefGoogle Scholar
  23. 23.
    Gercken G, Brauring C, Quantitative determination of hydrolysis products of phospholipids in the ischaemic rat brain, Pflügers Arch 344: 207 (1973).CrossRefGoogle Scholar
  24. 24.
    Berridge MJ, A novel cellular signaling system based on the integration of phospholipid and calcium metabolism, in: “Calcium and cell function”, Cheung WU, ed., Academic Press, New York (1983).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Edwin M. Nemoto
    • 1
  • M. R. Lin
    • 1
  • G. K. Shiu
    • 1
  • E. Ragupathy
    • 2
  1. 1.Dept. Anesthesiol. and Crit. Care Med.Univ. PittsburghPittsburghUSA
  2. 2.Brain-Behavior Res. Ctr.Sonoma Developmental Ctr.EldridgeUSA

Personalised recommendations