Advertisement

The Role of Recirculation for Functional and Metabolic Recovery After Cerebral Ischemia

  • Konstantin-A. Hossmann
Part of the NATO ASI Series book series (NSSA, volume 115)

Abstract

Disturbances of brain function and metabolism induced by ischemia are primarily caused by a reduction of the supply of oxygen and nutritients from the blood to the brain, and a reduction of the removal of metabolic waste products from the brain into the blood. There are indications, however, that this is not the only reason for the development of ischemic brain lesions. When blood flow is restored to the brain, damage may continue in a self-propagating way, and secondary disturbances may appear at a later time, even after the brain had already started to recover from the primary ischemic impact.

Keywords

Cerebral Blood Flow Cerebral Ischemia Cereb Blood Flow Transient Cerebral Ischemia Local Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Rahman A, Agardh CD, and Siesjö BK, Local cerebral blood flow in the rat during severe hypoglycemia, and in the recovery period following glucose injection, Acta Physiol Scand 109: 307 (1980).CrossRefGoogle Scholar
  2. Ames A III, Wright RL, Kowada M, Thurston JM, and Majno G, Cerebral ischemia. U. The no-reflow phenomenon, Am J Pathol 52: 437 (1968).Google Scholar
  3. Appelgren KL, Effect of perfusion pressure and hematocrit on capillary flow and transport in hyperemic skeletal muscle of the dog, Microvasc Res 4: 231 (1972).CrossRefGoogle Scholar
  4. Astrup J, Symon L, Branston NM, and Lassen NA, Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia, Stroke 8: 51 (1977).CrossRefGoogle Scholar
  5. Bandaranayake NM, Nemoto EM, and Stezositi SW, Rat brain osmolality during barbiturate anesthesia and global brain ischemia, Stroke 9: 249 (1978).CrossRefGoogle Scholar
  6. Bleyaert A, Safar P, Nemoto EM, and Stezoski SW, No amelioration of brain damage after global brain ischemia (GBI) in monkeys by hemodilution or heparinization, Crit Care Med 8: 251 (1980).CrossRefGoogle Scholar
  7. Brodman RF, Hackett RL, Finlayson B, and Pfaff WW, Microangiography of the renal vasculature following total renal artery occlusion, Surgery 75: 734 (1974).Google Scholar
  8. Cantu RC, Ames A III, DiGiacinto G, and Dixon J, Hypotension: A major factor limiting recovery from cerebral ischemia, J Surg Res 9: 525 (1969).CrossRefGoogle Scholar
  9. Deb S, Sensharma GC, and Singh S, Neuronal-vascular relationship in experimental ischaemic anoxia, Acta Antom 102: 254 (1978).CrossRefGoogle Scholar
  10. Dougherty JH, Levy DE, and Weksler BB, Experimental cerebral ischemia produces platelet aggregates, Neurology 27: 382 (1977).Google Scholar
  11. Fischer EG, and Ames A III, Studies on mechanisms of impairment of cerebral circulation following ischemia: effect of hemodilution and perfusion pressure, Stroke 3: 538 (1972).CrossRefGoogle Scholar
  12. Flores J, DiBona DR, Beck CH, and Leaf A, The role of cell swelling in ischemic renal damage and the protective effect of hypertonic solute, J Clin Invest 51: 118 (1972).CrossRefGoogle Scholar
  13. Ginsberg MD, and Myers RE, The topography of impaired microvascular perfusion in the primate brain following total circulatory arrest, Neurology 22: 998 (1972).CrossRefGoogle Scholar
  14. Ginsberg MD, Welsh FA, and Budd WW, Effect of glucose infusion on the brain’s response to diffuse ischemia, Stroke 9: 98 (1978).Google Scholar
  15. Gisvold SE, Safar P, Hendrickx HH, and Alexander H, Failure of thiopental (Th) to ameliorate brain damage after global brain ischemia (GBI) in pigtail monkey, Crit Care Med 10: 206 (1982).CrossRefGoogle Scholar
  16. Gurvitch AM, Blinkov SM, Valanchute AL, and Nikolayenko EM, Types of no-reflow phenomenon observed during arrest of cerebral circulation and postischemic period, Crit Care Med 4: 132 (1976).CrossRefGoogle Scholar
  17. Hallenbeck JM, and Furlow TW Jr, Prostaglandin I2 and indomethacin prevent impairment of post-ischemic brain reperfusion in the dog, Stroke 10: 629 (1979).CrossRefGoogle Scholar
  18. Hansen AJ, Gjedde A, and Siemkowicz E, Extracellular potassium and blood flow in the post-ischemic rat brain, Pflügers Arch 389: 1 (1980).CrossRefGoogle Scholar
  19. Harrison MJ, Sedal L, Arnold J, and Russel RWR, No-reflow phenomenon in the cerebral circulation of gerbil, J Neurol Neurosurg Psychiatry 38: 1190 (1975).CrossRefGoogle Scholar
  20. Hart MN, Sokoll MD, Davies LR, and Henriquez E, Vascular spasm in cat cerebral cortex following ischemia, Stroke 9: 52 (1978).CrossRefGoogle Scholar
  21. Hass WR, Beyond cerebral blood flow: An examination of the role of calcium in the initiation of cerebral infarction, in: “Cerebral vascular disease 3”, Meyer JS, Lechner H, Reivich M, Ott EO, Aranibar A, eds., Excerpta Medica, Amsterdam, Oxford, Princeton (1981).Google Scholar
  22. Hekmatpanah J, Cerebral blood flow dynamics in hypotension and cardiac arrest, Neurology 23: 174 (1973).CrossRefGoogle Scholar
  23. Hirsch H, Euler KH, and Schneider M, Luber die Erholung and Wiederbelebung des Gehirns nach Ischämie bei Normothermie, Pflügers Arch 265: 281 (1957).CrossRefGoogle Scholar
  24. Hirsch H, and Müller HA, Funktionelle and histologische Veränderungen des Kaninchengehirns nach kompletter Gehirnischämie, Pflügers Arch 275: 277 (1962).CrossRefGoogle Scholar
  25. Hossmann KA, Development and resolution of ischemic brain swelling, in: “Dynamics of brain edema”, Pappius HM, Feindel W, eds., Springer, Berlin, Heidelberg (1976).Google Scholar
  26. Hossmann KA, Cerebral dysfunction related to local and global ischemia of the brain, in: “Brain function in old age”, Hoffineister F, Muller C, eds., Springer, Berlin-Heidelberg-New York (1979).Google Scholar
  27. Hossmann KA, and Hossmann V, Coagulopathy following experimental cerebral ischemia, Stroke 8: 249 (1977).CrossRefGoogle Scholar
  28. Hossmann KA, van den Kerckhoff W, and Matsuoka Y, Treatment of cerebral ischemia by hemodilution, Bibliotheca Haemat 47: 77 (1981).Google Scholar
  29. Hossmann KA, and Kleihues P, Reversibility of ischemic brain damage, Arch Neurol 29: 375 (1973).CrossRefGoogle Scholar
  30. Hossmann KA, Lechtape-Grüter H, and Hossmann V, The role of cerebral blood flow for the recovery of the brain after prolonged ischemia, Z Neurol 204: 281 (1973).CrossRefGoogle Scholar
  31. Hossmann KA, Paschen W, and Csiba L, Relationship between calcium accumulation and recovery of cat brain after prolonged cerebral ischemia, J Cereb Blood Flow Metabol 3: 346 (1983).CrossRefGoogle Scholar
  32. Hossmann KA, and Takagi S, Osmolality of brain in cerebral ischemia, Exp Neurol 51: 124 (1976).CrossRefGoogle Scholar
  33. Hossmann KA, and Zimmermann V, Resuscitation of the monkey brain after 1 h complete ischemia. I. Physiological and morphological observations, Brain Res 81: 59 (1974).CrossRefGoogle Scholar
  34. Hossmann V, Hossmann KA, and Takagi S, Effect of intravascular platelet aggregation on blood recirculation following prolonged ischemia of the cat brain, J Neurol 222: 159 (1980).CrossRefGoogle Scholar
  35. Ingvar M, Nilsson B, and Siesjö BK, Local cerebral blood flow in the brain during bicuculline-induced seizures and the modulating influence of inhibition of prostaglandin synthesis, Acta Physiol Scand 111: 205 (1981).CrossRefGoogle Scholar
  36. Ito U, Olmo K, Yamaguchi T, Tomita H, Inaba H, and Kashima M, Transient appearance of “no-reflow” phenomenon in Mongolian gerbils, Stroke 11: 517 (1980).CrossRefGoogle Scholar
  37. Kazda S, Garthoff B, Krause HP, and Schloßmann K, Cerebro-vascular effects of the calcium antagonistic dihydropyridine derivative nimodipine in animal experiments, Drug Res 32: 331 (1982).Google Scholar
  38. Kerckhoff van den W, Hossmann KA, and Hossmann V, No effect of prostacyclin on blood flow and blood coagulation following global cerebral ischemia, Stroke 14: 724 (1983).CrossRefGoogle Scholar
  39. Kerckhoff van den W, Matsuoka Y, Paschen W, and Hossmann KA, Influence of barbiturates, hypothermia and hemodilution on post-ischemic metabolism and functional recovery following cerebro-circulatory arrest in cats, in: “Circulatory and developmental aspects of brain metabolism”, Spatz M, Mrsulja BB, Rakic LJ, eds., Plenum, New York (1980).Google Scholar
  40. Kirino T, Delayed neuronal death in the gerbil hippocampus following ischemia, Brain Res 239: 57 (1982).CrossRefGoogle Scholar
  41. Klatzo I, Pathophysiologic aspects of cerebral ischemia, in: “The nervous system, 1”, Tower DB, ed., Raven Press, New York (1975).Google Scholar
  42. Kloner RA, Ganote CE, and Jennings RB, The “no-reflow” phenomenon after temporary coronary occlusion in the dog, J Clin Invest 54: 1496 (1974).CrossRefGoogle Scholar
  43. Lauritzen M, Jorgensen MB, Diemer NH, Gjedde A, and Hansen HJ, Persistent oligemia of rat cerebral cortex in the wake of spreading depression, Ann Neurol 12: 469 (1982).CrossRefGoogle Scholar
  44. Levy DE, Brierley JF, and Plum F, Ischaemic brain damage in the gerbil in the absence of “no-reflow”, J Neurol Neurosurg Psychiatry 38: 1197 (1975).CrossRefGoogle Scholar
  45. Levy DE, van Uitert RL, and Pike CL, Delayed post-ischemic hypoperfusion: A potentially damaging consequence of stroke, Neurology 29: 1245 (1979).CrossRefGoogle Scholar
  46. Lin SR, The effect of dextran and streptokinase on cerebral function and blood flow after cardiac arrest. An experimental study on the dog, Neuroradiology 16: 340 (1978).CrossRefGoogle Scholar
  47. Meldrum BS, and Nilsson B, Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline, Brain 99: 523 (1976).CrossRefGoogle Scholar
  48. Mendelow AD, McCalden TA, Hattingh J, Coull A, Rosendorff C, and Eidelman BH, Cerebrovascular reactivity and metabolism after subarachnoid hemorrhage in baboons, Stroke 12: 58 (1981).CrossRefGoogle Scholar
  49. Miller CL, Lampard DG, Alexander K, and Brown WA, Local cerebral blood flow following transient cerebral ischemia. I. Onset of impaired reperfusion within the first hour following global ischemia, Stroke 11: 534 (1980).CrossRefGoogle Scholar
  50. Miller CL Alexander K, Lampard DG, Brown WA, and Griffiths R, Local cerebral blood flow following transient cerebral ischemia. II. Effect of arterial pCO on reperfusion following global ischemia, Stroke 11: 542 (1980).CrossRefGoogle Scholar
  51. Nemoto EM, Snyder JV, Carroll RG, and Morita H, Global ischemia in dogs: Cerebrovascular CO2 reactivity and autoregulation, Stroke 6: 425 (1975).CrossRefGoogle Scholar
  52. Pulsinelli WA, Levy DE, and Duffy TE, Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia, Ann Neurol 11: 499 (1982).CrossRefGoogle Scholar
  53. Schmid-Schönbein H, Microrheology of erythrocytes, blood viscosity and the distribution of blood flow in the microcirculation, in: “Handbuch der allgemeinen Pathologie III/7 Mikrozirkulation”, Altmann HW, Büchner F, Cottier H, Grundmann E, Holle G, Letterer E, Masshoff W, Meessen H, Roulet F, Seifert G, Siebert G, eds., Springer, Berlin-Heidelberg-New York (1977).Google Scholar
  54. Siemkowicz E, Cerebrovascular resistance in ischemia, Pflügers Arch 388: 243 (1980).CrossRefGoogle Scholar
  55. Siesjö BK, Cell damage in the brain: A speculative synthesis, J Cereb Blood Flow Metabol 1: 155 (1981).CrossRefGoogle Scholar
  56. Siesjö BK, and Abdul-Rahman A, Delayed hypoperfusion in the cerebral cortex of the rat in the recovery period following severe hypoglycemia, Acta Physiol Scand 106: 375 (1979).CrossRefGoogle Scholar
  57. Snyder JV, Nemoto EM, Carroll RG, and Safar P, Global ischemia in dogs: intracranial pressures, brain blood flow and metabolism, Stroke 6: 21 (1975).CrossRefGoogle Scholar
  58. Snyder BD, Ramirez-Lassepas M, and Sukhum P, Failure of penthotal to protect from anoxic cerebral injury, Stroke 9: 99 (1978).Google Scholar
  59. Snyder BD, Ramirez-Lassepas M, Sukhum P, Fryd D, and Sung JH, Failure of thiopental to modify global anoxic injury, Stroke 10: 135 (1979).CrossRefGoogle Scholar
  60. Steen PA, Newberg LA, Milde JH, and Michenfelder JD, Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemia in the dog, J Cereb Blood Flow Metabol 3: 38 (1983).CrossRefGoogle Scholar
  61. Stullken EH Jr, and Sokoll MD, The effects of heparin on recovery from ischemic brain injuries in cats, Anesth Analg 55: 683 (1976).CrossRefGoogle Scholar
  62. Takagi S, Cocito L, and Hossmann KA, Blood recirculation and pharmacological responsiveness of the cerebral vasculature following prolonged ischemia of cat brain, Stroke 8: 707 (1977).CrossRefGoogle Scholar
  63. Tranum-Jensen J, Janse MJ, Fiolet JWT, Krieger. WJG, Naumann d’Alnoncourt VC, and Durrer D, Tissue osmolality, cell swelling, and reperfusion in acute regional myocardial ischemia in the isolated porcine heart, Circ Res 49: 364 (1981).Google Scholar
  64. Tweed WA, Wade JG, and Davidson WJ, Mechanisms of the “low-flow” state during resuscitation of the totally ischemic brain, Can J Neurol Sci 4: 19 (1977).Google Scholar
  65. Wade JG, Amtorp W, and Sorensen SC, The “low-flow” state in cerebral ischemia, Arch Neurol 32: 381 (1975).CrossRefGoogle Scholar
  66. Welch KMA, Meyer JS, Teraura T, Hashi K, and Shinmaru S, Ischemic anoxia and cerebral serotonin levels, J Neurol Sci 16: 85 (1972).CrossRefGoogle Scholar
  67. White BC, Gadzinski DS, Hoehner PJ, Krome C, Hoehner T, White JD, and Trombley JH Jr, Effect of flunarizine on canine cerebral cortical blood flow and vascular resistance post cardiac arrest, Ann Emerg Med 11: 119 (1982).CrossRefGoogle Scholar
  68. White BC, Winegar CP, Henderson O, Jackson RE, Krause G, Ohara T, Goodin T, and Vigor ND, Prolonged hypoperfusion in the cerebral cortex following cardiac arrest and resuscitation in dogs, Ann Emerg Med 12: 414 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Konstantin-A. Hossmann
    • 1
  1. 1.Abteilung für experimentelle NeurologieMax-Planck-Institut für neurologische ForschungCologneGermany

Personalised recommendations