Advertisement

Modifications of cAMP and Creatine Kinase-Isoenzymes in CSF in Experimental Head Injury

  • Raffael Vara-Thorbeck
  • M. Ruiz-Morales
Part of the NATO ASI Series book series (NSSA, volume 115)

Abstract

In previous papers we have demonstrated an increase in activity of various enzymes in CSF of patients suffering not only from traumatic brain injury but also from other cerebral diseases, such as tumors, meningoencephalitis, stroke etc. (21,27,29,30,31,37). Recent studies using computerized tomography have emphasized that brain swelling can occur immediately within 10–20 minutes after head injury (15,38). The etiology of acute brain swelling following head injury is the subject of. many, also recently conducted studies (4,7,17). Vascular dilatation (engorgement), cerebral edema (Hirnödem), or a combination of both seem to offer a most likely explanation (17). Therefore it is our opinion that cold injury of the brain which is extensively used since the studies of Clasen (5) does not seem to be a valid model, because of the etiological dissimilarity with traumatic brain swelling of patients. Aim of the present study was to analyze immediate changes of cAMP and creatine kinase (CK) in CSF employing an experimental model of cerebral concussion and contusion.

Keywords

Creatine Kinase Head Injury Severe Head Injury Secondary Brain Damage Epidural Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams JH, Mitchell DE, Graham DI, and Doyle D, Diffuse brain damage of immediate impact type. Its relationship to “primary brain-stem damage” in head injury, Brain 100: 489 (1977).CrossRefGoogle Scholar
  2. 2.
    Bakay L, Lee JC, Lee GC, and Peng JR, Experimental cerebral concussion. Part 1: An electron microscopy study, J Neurosurg 47: 525 (1977).CrossRefGoogle Scholar
  3. 3.
    Brooks BR, Engel WK, and Sode J, Blood-to-cerebrospinal fluid barrier for cyclic adenosine monophosphate in man, Arch Neurol 34: 468 (1977).CrossRefGoogle Scholar
  4. 4.
    Bruce DA, Sutton LN, and Schut L, Acute brain swelling and cerebral edema in children, in: “Brain edema”, de Vlieger M, de Lange SA, Beks JWF, eds., J. Wiley Sons, New York (1981).Google Scholar
  5. 5.
    Clasen RA, Cooke PM, Pandolfi S, Boyd D, and Raimondi AJ, Experimental cerebral edema produced by focal freezing, J Neuropathol Exp Neurol 21: 579 (1962).CrossRefGoogle Scholar
  6. 6.
    Cooper PR, Chalif DJ, Ramsey JF, and Moore RJ, Radioimmunoassay of the brain type isoenzyme of creatine phosphokinase (CK-BB): A new diagnostic tool in the evaluation of patients with head injury, Neurosurg 12: 536 (1983).CrossRefGoogle Scholar
  7. 7.
    Duckrow RB, LaManna JC, Rosenthal M, Levasseur JE, and Patterson JL, Oxidative metabolic activity of cerebral cortex after fluid-percussion head injury in the cat, J Neurosurg 54: 607 (1981).CrossRefGoogle Scholar
  8. 8.
    Fleischer AS, Rudman DR, Fresh CB, and Tindall GT, Concentration of 3’5’ cyclic adenosine monophosphate in ventricular CSF of patients following severe head trauma, J Neurosurg 47: 517 (1977).CrossRefGoogle Scholar
  9. 9.
    Gennarelli TA, and Thibault LE, Biomechanics of acute subdural hematoma, J Trauma 22: 680 (1982).CrossRefGoogle Scholar
  10. 10.
    Gurdjian ES, Recent advances in the study of the mechanism of impact injury of the head - a summary, Clin Neurosurg 19: 1 (1972).Google Scholar
  11. 11.
    Gurdjian ES, “Impact head injury. Mechanistic, clinical and preventive correlations”, Thomas, Springfield, Ill. (1975).Google Scholar
  12. 12.
    Hamberger A, and Rinder L, Experimental brain concussion, J Neuropathol Exp Neurol 25: 68 (1966).CrossRefGoogle Scholar
  13. 13.
    Hans P, Born JD, Chapelle JP, and Milboum G, Creatine kinase isoenzymes in severe head injury, J Neurosurg 58: 689 (1983).CrossRefGoogle Scholar
  14. 14.
    Henry PD, Roberts R, and Sobel BE, Rapid separation of plasma creatine kinase isoenzymes by batch absorption on glass beads, Clin Chem 21: 844 (1975).Google Scholar
  15. 15.
    Kobrine AI, Timmins E, Fajjoub RK, Rizzoli HV, and Davis DO, Demonstration of massive traumatic brain swelling within 20 minutes after injury. Case report, J Neurosurg 46: 256 (1977).CrossRefGoogle Scholar
  16. 16.
    Krishna G, Forn J, Voigt K, Pauls M, and Gessa GL, Dynamic aspects of neurohormonal control of cyclic 3’,5’-AMP synthesis in brain, Adv Biochem Psychopharmacol 3: 155 (1970).Google Scholar
  17. 17.
    Lanksch W, Baethmann A, and Kazner E, Computed tomography of brain edema, in: “Brain edema”, de Vlieger M, de Lange SA, Beks JWF, eds., J. Wiley Sons, New York, (1981).Google Scholar
  18. 18.
    Liu HC, Lee JC, and Bakay L, Experimental cerebral concussion. A histochemical study, Acta Neurochir 47: 105 (1979).CrossRefGoogle Scholar
  19. 19.
    McLaurin RL, and Tornheim PA, Changes in tissue density and vascular permeability in the cerebral cortex following experimental closed head trauma, International Conference on Recent Advances in Neurotraumatology, Edinburgh, Abstracts (1982).Google Scholar
  20. 20.
    Mercer DW, Separation of tissue and serum creatine kinase isoenzymes by ion exchange column chromatography, Clin Chem 20: 36 (1974).Google Scholar
  21. 21.
    Morales-Valentin OI, Ruiz-Morales M, and Vara-Thorbeck R, Prognosis value of the modification in the activity of some enzymes in brain injury, Eur Surg Res 11: 35 (1979).CrossRefGoogle Scholar
  22. 22.
    Myllylä VV, Effect of cerebral injury on cerebrospinal fluid cyclic AMP concentration, Eur Neurol 14: 413 (1976).CrossRefGoogle Scholar
  23. 23.
    Ommaya AK, and Gennarelli TA, Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations on blunt head injuries, Brain 97: 633 (1974).CrossRefGoogle Scholar
  24. 24.
    Palay SL, and Chan-Palay V, Cerebellar cortex. Cytology and organization, Springer-Verlag, Berlin-Heidelberg-New York (1974).CrossRefGoogle Scholar
  25. 25.
    Rabow L, and Hedman G, CK-BB isoenzymes as a sign of cerebral injury, Acta Neurochir Suppl. 28:108 (1979).Google Scholar
  26. 26.
    Reulen HJ, Tsuyumu, M, Tack A, Fenske AR, and Prioleau GR, Clearance edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema, J Neurosurg 48: 754 (1978).CrossRefGoogle Scholar
  27. 27.
    Ros-Die E, Morales-Valentin O, Suarez-Paneda JR, and Vara-Thorbeck R, Modificaciones de la actividad enzimatica de algunas enzimas del liquido cefalorraquideo humano en los traumatismo craneoencefalicos, Rev Esp 147: 377 (1977).Google Scholar
  28. 28.
    Rudman D, Fleischer A, and Kutner HM, Concentration of 3’,5’-cyclic adenosine monophosphate in ventricular cerebrospinal fluid of patients with prolonged coma after head trauma or intracranial hemorrhage, N Engl J Med 295: 635 (1976).CrossRefGoogle Scholar
  29. 29.
    Ruiz-Morales M, Oscilaciones en sangre y LCR del cAMP e isoenzimas CK y LDH en el TCE experimental gradual; MD thesis, Granada (1981).Google Scholar
  30. 30.
    Ruiz-Morales M, Herrero-Mateo LM, and Vara-Thorbeck R, Creatine kinase isoenzymes in serum and CSF after gradual experimental brain injury. Its relation to prognostic value or to extent of brain damage, in: Piotrowski W, Brock M and Klinger M, eds., Adv Neurosurg 12:307, Springer, Berlin (1984).Google Scholar
  31. 31.
    Ruiz-Morales M, and Vara-Thorbeck R, Changes in CSF cAMP after gradual experimental brain injury: Prognostic value, Eur Surg Res 14: 111 (1982).Google Scholar
  32. 32.
    Somlyo Ap, Somlyo AV, and Smieesko V, Cyclic AMP and vascular smooth muscle, in: “Advances in cyclic nucleotide research”, Greengard P, Robinson GA, eds., Raven Press, New York (1972).Google Scholar
  33. 33.
    Tornheim PA, and McLaurin RL, Acute changes in regional brain water content following experimental closed head injury, J Neurosurg 55: 407 (1981).CrossRefGoogle Scholar
  34. 34.
    Tornheim PA, McLaurin RL, and Thorpe JF, The edema of cerebral contusion, Surg Neurol 5: 171 (1976).Google Scholar
  35. 35.
    Tovey KC, Oldham KG, and Whelan JAM, A simple direct assay for cyclic AMP in plasma and other biological samples used an improved competitive protein binding technique, Clinica chim Acta 56: 221 (1974).CrossRefGoogle Scholar
  36. 36.
    Tsuyumu M, Reulen HJ, and Prioleau G, Dynamics of formation and resolution of vasogenic brain oedema. I. Measurement of oedema clearance into ventricular CSF, Acta Neurochir 57: 1 (1981).CrossRefGoogle Scholar
  37. 37.
    Vara-Thorbeck R, Modificaciones de la actividad enzimatica del liquido cefallorraquideo (LCR) humano en los procesos tumorales, inflamatorios, traumaticos y vasculares encefalicos, Rev Clin Esp 101: 100 (1966).Google Scholar
  38. 38.
    Waga W, Tochio H, and Sakakura M, Traumatic cerebral swelling developing within 30 minutes after injury, Surg Neurol 11: 191 (1979).Google Scholar
  39. 39.
    Watanabe H, and Passonneau JV, Cyclic adenosine monophosphate in cerebral cortex. Alterations following trauma, Arch Neurol 32: 181 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Raffael Vara-Thorbeck
    • 1
  • M. Ruiz-Morales
    • 1
  1. 1.Catedra de Patologia Quirurgica, II. Facultad de MedicinaUniversidad de GranadaGranadaSpain

Personalised recommendations