Advertisement

High Resolution Quasi-Free (e,e′p) Experiments

  • P. K. A. de Witt Huberts
Part of the NATO ASI Series book series (NSSB, volume 142)

Abstract

The purpose of these lectures is to provide an introduction to recent state-of-the-art developments in the field of the quasi-free proton-knock-out process induced by high-energy (=500 MeV) electrons. In the electron scattering (e,e′) response function d2σ/dΩde′ of a nucleus the quasi-free process becomes the dominant feature when the wavelength of the virtual photon becomes of the order of the nucleon dimension δ r=0.8 fm. Since the average internucleon distance amounts to = 2 fm and provided that the mean free path of the knocked-out nucleon is substantially larger than the internucleon distance, the dominant reaction mechanism involves incoherent scattering off individual (quasi-free) nucleons. In this incoherent scattering limit the probability distribution of momentum and energy of the struck nucleon can be reconstructed if a coincidence (e,e′p) experiment is performed. Due to the, in principle, straightforward simplicity of interpretation the quasi-free process has found widespread application in diverse fields varying from the few kilo electron volt (e,2e) process1 at the level of atomic dimensions, to the deep-inelastic scattering of multi-GeV electrons from point-like constituents (partons) in the nucleon.2

Keywords

Spectral Function Momentum Distribution Optical Potential Virtual Photon Occupation Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Martel et al., Journ. Low Temp., Physics 23, 285 (1976).Google Scholar
  2. [2]
    A. Bodek, Phys. Rev. D20, 1471 (1979).ADSGoogle Scholar
  3. [3]
    B. Frois et al., Nucl. Phys. A396, 409c (1983).ADSCrossRefGoogle Scholar
  4. [4]
    B. Frois et al., Nucl. Phys. A434, 47c (1985).ADSGoogle Scholar
  5. [5]
    C. de Vries et al., Nucl. Instr. and Meth. 223, 1 (1984).CrossRefGoogle Scholar
  6. [6]
    L. Lapikas, P.K.A. de Witt Huberts, Journ. de Physique Colloque, C4, Tome 45, C4 - 57 (1984).Google Scholar
  7. [7]
    V. R. Pandharipande, C. N. Papanicolas, J. Wambach, Phys. Rev. Lett. 53, 1133 (1984).ADSCrossRefGoogle Scholar
  8. [8]
    L. S. Celenza et al., Phys. Rev. C31, 946 (1985).ADSGoogle Scholar
  9. [9]
    T. W. Donnelly in ‘Symmetry in Nuclear Structure’, NATO ASI Series B; Physics, Vol. 93, Plenum Press.Google Scholar
  10. [10]
    T. de Forest, Jr., Ann. Phys. 45, 365 (1967).ADSCrossRefGoogle Scholar
  11. [11]
    J.H.J. Distelbrink et al., Nucl. Instru. and Meth. 220, 433 (1984).CrossRefGoogle Scholar
  12. [12]
    J. Knoll, Nucl. Phys. A223, 462 (1974).CrossRefGoogle Scholar
  13. [13]
    S. Platchkov et al., Phys. Rev. C, Vol. 25, 2318 (1982).ADSCrossRefGoogle Scholar
  14. [14]
    E. Jans et al., Phys. Rev. Lett. 49, 974c (1982).ADSCrossRefGoogle Scholar
  15. [15]
    I. Sick et al., Phys. Rev. Lett. 45, 871 (1980).ADSCrossRefGoogle Scholar
  16. [16]
    C. Ciofi degli Atti et al., Phys. Lett. 127B, 303 (1983).CrossRefGoogle Scholar
  17. [17]
    N. J. Pirner, J. P. Vary, Phys. Rev. Lett. 46, 1376 (1981).ADSCrossRefGoogle Scholar
  18. [18]
    J. M. Laget, Phys. Lett. 151B, 325 (1985).CrossRefGoogle Scholar
  19. [19]
    P.W.M. Keizer et al., Phys. Lett. B, Vol. 157B, 255 (1985).ADSCrossRefGoogle Scholar
  20. [20]
    W. Weise, Nucl. Phys. A396, 373c (1983).ADSCrossRefGoogle Scholar
  21. [21]
    A.G.M. van Hees, P.W.M. Glaudemans, Z. Physik A315, 223 (1985).CrossRefGoogle Scholar
  22. [22]
    G. v. d. Steenhoven et al., Phys. Lett. В, 156B 146 (1985).CrossRefGoogle Scholar
  23. [23]
    G. E. Walker, Proceedings of the Third Workshop of the Bates’ Users Theoiy Group, MIT, July 23–24 (1984). Ed. G. H. Rawitscher.Google Scholar
  24. [24]
    D. W. Devins et al., Aust. J. Phys. 32, 323 (1979).ADSCrossRefGoogle Scholar
  25. [25]
    J. W. den Herder, Phys. Lett. B, to be published.Google Scholar
  26. [26]
    P. Schwandt et al., Phys. Rev. C26, 55 (1982).ADSCrossRefGoogle Scholar
  27. [27]
    A. Stuirbrink et al., Z. Physik A297, 307 (1980).ADSCrossRefGoogle Scholar
  28. [28]
    L. Lapikas, private communication.Google Scholar
  29. [29]
    H. P. Blok et al., Contribution to International Symposium on Medium Energy Nucléon and Anti-nucleon Scattering, Bad Honnef (FRG) (1985).Google Scholar
  30. [30]
    B. C. Clark et al., Phys. Rev. Lett. 50, 1644 (1983).ADSCrossRefGoogle Scholar
  31. [31]
    D. F. Jackson, I. Abdul-Jalil, J. Phys. G6, 481 (1980).ADSCrossRefGoogle Scholar
  32. [32]
    B. Frois et al., Nucl. Phys. A396, 409c (1983).ADSCrossRefGoogle Scholar
  33. 33] E. N. M. Quint, to be published in Phys. Lett. B.Google Scholar
  34. 34] G. J. Wagner, private communication.Google Scholar
  35. [35]
    H. Nann, private communication.Google Scholar
  36. [36]
    R. Dymark, Phys. Lett. 155B, 5 (1985).CrossRefGoogle Scholar
  37. [37]
    T. de Forest, Jr., Nucl. Phys. A392, 232 (1983).Google Scholar
  38. [38]
    Z. E. Meziani et al., Phys. Rev. Lett. 54, 1233 (1985).ADSCrossRefGoogle Scholar
  39. [39]
    P. J. Mulders, Phys. Rev. Lett 54, 2560 (1985).ADSCrossRefGoogle Scholar
  40. 40] T. de Forest, Jr., Proc. of 3rd Bates’ Users Theory Group Workshop, MIT (1984), Ed. G. H. Rawitscher.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. K. A. de Witt Huberts
    • 1
  1. 1.NIKHEF-KAJ AmsterdamThe Netherlands

Personalised recommendations