Electron Scattering from Nuclei at Several GeV

  • R. G. Arnold
Part of the NATO ASI Series book series (NSSB, volume 142)


A basic goal of physics is to uncover and then explain the layers in the structure of matter. In the last decade evidence has accumulated from experiments at GeV energies that nucleons and mesons are composed of a new substructure containing charged pointlike quarks interacting by gluon exchange. This is a peculiar substructure. The quarks and gluons carry a new quantum number called color, but they have never been observed isolated in the laboratory. The objects observed in real experiments appear to be combinations of quarks bound into color neutral particles or color singlets. Quantum chromo-dynamics (QCD) is the gauge theory of colored quarks and gluons invented to describe this substructure. A central task of modern nuclear physics is to understand how the structure and interactions of nucleons arise from the interactions among quarks.


Form Factor Virtual Photon Valence Quark Nucleon Form Factor Quasi Elastic Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Brodsky, G. Farrar, Phys. Rev. D11, 1309 (1975).ADSCrossRefGoogle Scholar
  2. [2]
    S. Brodsky, B. Chertok, Phys. Rev. D14, 3003 (1976).ADSGoogle Scholar
  3. [3]
    S. Brodsky, G. Lepage, Phys. Rev. D22, 2157 (1980).Google Scholar
  4. [4]
    Physics Today, August 1985, p. 17.Google Scholar
  5. [5]
    N. Isgur, C. Llewellyn Smith, Phys. Rev. Letters 52, 1080 (1984).Google Scholar
  6. [6]
    V. I. Cherniak, I. R. Zhitnitsky, Nucl. Phys. B246, 52 (1984).ADSCrossRefGoogle Scholar
  7. [7]
    A. Andrikopoulou, J. Phys. G: Nucl. Phys. 11, 21 (1985).ADSCrossRefGoogle Scholar
  8. [8]
    R. Arnold et al, “A Proposal for Measurement of Electron-Proton Cross Sections at Large Momentum Transfer”, SLAC Experiment E136 (1980).Google Scholar
  9. [9]
    J. W. Mark, SLAC PUB 3169 (1983), Cryogenic Engineering Conference and International Cryogenic Materials Conference, Colorado Springs Colorado, August 11–19 (1983).Google Scholar
  10. [10]
    W. Bartel et al, Nucl. Phys. B58, 429 (1973); K. Hanson et al., Phys. Rev. D8, 753 (1973).ADSCrossRefGoogle Scholar
  11. [11]
    R. J. Budnitz et al, Phys. Rev. 173, 1357 (1968); W. Albrecht et al., Phys. Rev. 26B, 642 (1968).ADSCrossRefGoogle Scholar
  12. [12]
    G. Hohler et al., Nucl. Phys. B114,505 (1976); S. Blatnik, N. Zovko, Acta Phys. Austriaca 39, 62 (1974).ADSCrossRefGoogle Scholar
  13. [13]
    S. Rock et al., Phys. Rev. Letters 49, 1139 (1982).ADSCrossRefGoogle Scholar
  14. [14]
    R. Arnold et al., Phys. Rev. Letters 35, 116 (1975).CrossRefGoogle Scholar
  15. [15]
    S. Auffret et al, Phys. Rev. Letters 54, 649 (1985).ADSCrossRefGoogle Scholar
  16. [16]
    R. Arnold et al, “A Proposal to Build a New Injector at SLAC for a Program of Research in Experimental Nuclear Physics”, SLAC (1982).Google Scholar
  17. [17]
    R. Arnold, “NPAS — A Program of Nuclear Physics at SLAC”, CEBAF Summer Workshop, Newport News, Virginia, June 25–29, 1984.Google Scholar
  18. [18]
    D. Day et al., “Proposal for Inclusive Electron Scattering from Nuclei”, NPAS experiment NE3 (1984).Google Scholar
  19. [19]
    R. Arnold et al., “A Proposal to Measure Electron Scattering from Deuterium at Large Momentum Transfer at 180 Degrees”, NPAS Experiment NE4 (1984).Google Scholar
  20. [20]
    J. Litt, et al., Phys. Rev. Letters 31B, 40 (1970).Google Scholar
  21. [21]
    J. M. Cavedon et al., Phys. Rev. Letters 49, 986 (1982).ADSCrossRefGoogle Scholar
  22. [22]
    F. P. Juster, et al., Phys. Rev. Letters 55, 2261 (1985). and by the National Science Foundation under Grant No. PHY8410549.ADSCrossRefGoogle Scholar
  23. [23]
    R. Arnold, B. Carlson, F. Gross, Phys Rev. C23, 363 (1981); W. Donnelly, CTP Print CTP, 1254 (1985), Submitted to Annals of Phys.MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    M. G. Albrow, et al., Nucl. Phys. B23, (1970); D. Miller et al., Phys. Rev. D16, 2016 (1977); P. R. Bevington et al., Phys. Rev. Letters 41, 384 (1978).Google Scholar
  25. [25]
    Based on a high polarization laser driven polarized source under development at SLAC, С. K. Sinclair, private communication.Google Scholar
  26. [26]
    R. Taylor, “Inelastic Electron-Nucleon Scattering Experiments”, Proceedings International Symposium on Lepton Photon Interactions, Stanford, August 21–27, (1976); J. Drees, “Deep Inelastic Scattering”, Lectures at the 1980 CERN School of Physics; J. Drees, Proceedings 1981 International Symposium on Lepton and Photon Interactions at High Energy, Bonn August 24–29 (1981); F. Eisele, Journal de Physique C3, 337 (1982); F. Dydak, Proceedings 1983 International Lepton/Photon Symposium, Cornell University, Ithica, N.Y. (1983); W. D. Nowak, CERN Print PHE 84–10, submitted to Fortschritte der Physik.Google Scholar
  27. [27]
    J. J. Aubert, et al., Phys. Letters 123B, 275 (1983).ADSGoogle Scholar
  28. [28]
    N. N. Nikolaev, “EMC Effect and Quark Degrees of Freedom in Nuclei: Facts and Fancy”, Oxfort Print TP-58/84, Invited Talk at VII International Seminar on Problems of High Energy Physics-Multiquark Interactions and Quantum Chromo- dynamics, Dubna USSR, 19-23 June 1984; R. R. Norton, “The Experimental Status of the EMC Effect”, Rutherford Print RAL-85-054, Invited talk at Topical Seminar on Few and Many Quark Systems, San Marino, Italy 25–29 March 1985; E. L. Berger, “Interpretations of the Nuclear Dependence of Deep Inelastic Lepton Scattering”, Argonne Print ANL-HEP-PR-85–70, and Proceedings of the Topical Seminar, San Marino (1985); H. J. Pirner, “Deep Inelastic Lepton-Nucleus Scattering”, Proceedings Int. School of Nuclear Physics Erice, to be published. Progress in Particle and Nuclear Physics (1984).Google Scholar
  29. [29]
    R. P. Feynman, Photon-Hadron Interactions, W. A. Benjamin Inc., Reading Mass. (1972).Google Scholar
  30. [30]
    A. Bodek et al., Phys. Rev. D20, 1471 (1979); M. D. Mestayer et al., Phys. Rev. D27, 285 (1983).ADSGoogle Scholar
  31. [31]
    R. Barbieri et al., Nucl. Phys. B117, 50 (1976); A. DeRujula et al., Ann. Phys. 103, 315(1977).ADSCrossRefGoogle Scholar
  32. [32]
    A. Buras et al., Nucl. Phys. B131, 308 (1977), 132, 249 (1978); L. F. Abbott et al., Phys. Letters 88B, 157 (1979).ADSCrossRefGoogle Scholar
  33. [33]
    H. Abramowicz, et al., Z. Phys. C17, 283 (1983).Google Scholar
  34. [34]
    Neutrino data from the BEBC (WA25) collaboration, figure from F. Dydak, Ref. 26.Google Scholar
  35. [35]
    See review by F. Eisele, Ref. 26.Google Scholar
  36. [36]
    C. Y. Prescott, et al., Phys. Lett. 77B, 347 (1978).Google Scholar
  37. [37]
    V. W. Hughes, J. Kuti, Ann. Rev. Nucl. Part. Sci. 33, 611 (1983).ADSCrossRefGoogle Scholar
  38. [38]
    H. E. Montgomery, Proceedings 10th International Symposium on Lepton-Photon Interactions, Bonn (1981), p. 508; N. Schmitz, ibid, p. 527; F. Dydak in Ref. 26.Google Scholar
  39. [39]
    F. Bergsma, et al., Phys. Letters 123B, 269 (1983); M. Jonker et al, Phys. Letters 128B, 117 (1983).ADSGoogle Scholar
  40. [40]
    M. A. Parker, et al., Nucl. Phys, B232, 1 (1984); A. E. Asratyan, et al., Moscow ITEP print 115, submitted to Sov. J. Nucl. Phys. (1985).ADSCrossRefGoogle Scholar
  41. [41]
    A. Bodek, et al, Phys. Rev. Letters 50,1431; 54, 534 (1983).ADSCrossRefGoogle Scholar
  42. [42]
    A. Bodek, J. Ritchie, Phys. Rev. D23, 1070 (1981); D24, 1400 (1981).ADSCrossRefGoogle Scholar
  43. [43]
    R. Arnold, et al., Phys. Rev. Letters 52, 727 (1984).ADSCrossRefGoogle Scholar
  44. [44]
    S. Stein, et al., Phys. Rev. D12, 1884 (1975).ADSGoogle Scholar
  45. [45]
    M. S. Goodman, et al., Phys. Rev. Letters 47, 293 (1981).ADSCrossRefGoogle Scholar
  46. [46]
    S. Rock, 22nd International Conference on High Energy Physics, Leipzig, East Germany, July 19–25 (1984); J. Gomez, SLAC PUB 3552 (1985).Google Scholar
  47. [47]
    L. S. Celenza, A. Rosenthal, C. M. Shakin, Phys. Rev. Letters 53, 892 (1984).ADSCrossRefGoogle Scholar
  48. [48]
    P. J. Mulders, Phys. Rev. 54, 2560 (1985).ADSGoogle Scholar
  49. [49]
    R. L. Jaffe, et al., Phys. Letters 134B, 449 (1984); C. E. Carlson, T. J. Havens, Phys. Rev. Letters 51, 261 (1983); F. E. Close et al, Phys. Letters 129B, 346 (1983).ADSGoogle Scholar
  50. [50]
    H. Pirner, J. Vary, Phys. Rev. Letters 46, 1376 (1981).ADSCrossRefGoogle Scholar
  51. [51]
    P. Bosted, et al., Phys. Rev. Letters 49, 1380 (1982).ADSCrossRefGoogle Scholar
  52. [52]
    O. Nachtmann, H. J. Pirner, Z. Phys. C21, 277 (1984).Google Scholar
  53. [53]
    C. H. Llewellyn Smith, Phys. Rev. Letters 128B, 107 (1983); M. Erickson, A. W. Thomas, Phys. Rev. Letters 128B, 112 (1983); E. L. Berger, F. Coester, Phys. Rev. D32, 1071 (1985).Google Scholar
  54. [54]
    D. Allasia, et al., CERN Proposal SPSC/P210, “Detailed Measurements of Structure Functions from Nucleons and Nuclei”, February 1985.Google Scholar
  55. [55]
    Fermilab experiment E665, T. B. Kirk, (FNAL), V. Eckardt (MPI) spokesmen; D. F. Geesaman, M. C. Green, Argonne print PHY-4622-ME-85 (1985).Google Scholar
  56. [56]
    R. Arnold, et al., SLAC Proposal E140, “Measurement of the x, Q2, and A- Dependence of R”, February 1985.Google Scholar
  57. [57]
    L. F. Abbott, R. M. Barnett, Annals Phys. 125, 276 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. G. Arnold
    • 1
    • 2
  1. 1.The American UniversityUSA
  2. 2.Stanford Linear Accelerator CenterStanfordUSA

Personalised recommendations