Advertisement

Regulation of Drugs Affecting Striatal Cholinergic Activity by Corticostriatal Projections

  • H. Ladinsky
  • M. Sieklucka
  • F. Fiorentini
  • G. Forloni
  • P. Cicioni
  • S. Consolo
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

Electrical (30) and biochemical (7, 22) studies have provided evidence for the existence of a massive pathway projecting from the cortex to the striatum. Histologically, the corticostriatal fibers originate from pyramidal cells of layer V (13, 32), and appear to make synaptic contacts with about 60% of all neurons intrinsic to the neostriatum, among which is included the entire population of Golgi type II interneurons associated with choline acetyltransferase-containing cells (12). In addition, the corticostriatal pathway appears to utilize glutamic acid (7, 15, 22, 28), an excitatory neurotransmitter that has been shown to increase acetylcholine (ACh) release from striatal slices in vitro, through N-methyl-D-aspartate and glutamic acid-preferring type receptors, possibly localized on the cholinergic cells (21). This pathway appears to regulate striatal cholinergic activity as the following results indicate: a) cholinergic interneurons are destroyed by the intrastriatal application of kainic acid, a conformationally restricted analog of glutamic acid; and b) striatal cholinergic neurotransmission is compromised after longterm decortication, i.e. the ACh turnover rate is decreased (31) and the sodium-dependent high affinity uptake of choline is reduced (27).

Keywords

Cholinergic Neuron Kainic Acid Ergot Alkaloid Cholinergic Interneuron Corticostriatal Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Butcher, L.L. and Wolf, N.J. (1982): Brain Res. Bull. 9: 475–492.CrossRefGoogle Scholar
  2. 2.
    Carenzi, A Cheney, D.L., Costa, E., Guidotti, A. and Racagni,G. (1975): Neuropharmacology 14: 927–939.CrossRefGoogle Scholar
  3. 3.
    Consolo, S Ladinsky, H. and Garattini, S. (1974): J. Pharm.Pharmacol. 26: 275–277.CrossRefGoogle Scholar
  4. 4.
    Consolo, S., Ladinsky, H. and Bianchi, S. (1975): Eur. J. Pharmacol. 33: 345–351.CrossRefGoogle Scholar
  5. 5.
    Consolo, S., Ladinsky, H., Pugnetti, P., Fusi, R. and Crunelli V. (1981): Life Sci. 29:457–465Google Scholar
  6. 6.
    Consolo,S., Forloni,G.L., Fisone,G., Sieklucka, M. and Ladinsky H. (1983): Biochem. Pharmacol. 32: 2993–2996.CrossRefGoogle Scholar
  7. 7.
    Divac, I., Fonnum, F. and Storm-Mathisen, J. (1977): Nature Lond. 266: 377–378.CrossRefGoogle Scholar
  8. 8.
    Domino, E,F. and Wilson, A.E. (1972): Psychopharmacologia 25 291–298.CrossRefGoogle Scholar
  9. 9.
    Fonnum, F. (1975): J. Neurochem. 24: 407–409.CrossRefGoogle Scholar
  10. 10.
    Giorguieff, M.F., Kernel, M.L. and Glowinski, J. (1977): Neurosci. Letters 6: 73–77.CrossRefGoogle Scholar
  11. 11.
    Guyenet, P., Euvrard, C., Javoy, F., Herbet, A. and Glowinski, J. (1977): Brain Res. 136: 487–500.CrossRefGoogle Scholar
  12. 12.
    Hattori, T., McGeer, E.G. and McGeer, P.L. (1979): J. Comp. Neurol. 185: 347–354.CrossRefGoogle Scholar
  13. 13.
    Hedreen, J.C. (1977): Neurosci. Letters 4: 1–7.CrossRefGoogle Scholar
  14. 14.
    Keller, R., Oke, A., Mefford, I. and Adams, R.N. (1976): Life Sci. 19: 995–1004.CrossRefGoogle Scholar
  15. 15.
    Kim, J-S., Hassler, R., Haug, P. and Paik, K-S. (1977): Brain Res. 132: 370–374.CrossRefGoogle Scholar
  16. 16.
    Ladinsky, H., Consolo, S., Bianchi, S., Samanin, R. and Ghezzi, D. (1975): Brain Res. 84: 221–226.CrossRefGoogle Scholar
  17. 17.
    Ladinsky, H., Consolo, S., Bianchi, S. and Jori, A. (1976): Brain Res. 108: 351–361.CrossRefGoogle Scholar
  18. 18.
    Ladinsky, H., Consolo, S., Samanin, R., Algeri, S. and Ponzio, F. (1980): Adv. Biochem. Psychopharmacol. 24: 259–265.Google Scholar
  19. 19.
    Ladinsky, H., Consolo, S., Forloni, G. and Tirelli, A.S. (1981): Brain Res. 225: 217–223.CrossRefGoogle Scholar
  20. 20.
    Lehmann, J. and Langer, S.Z. (1982): Brain Res. 248: 61–69.CrossRefGoogle Scholar
  21. 21.
    Lehmann, J. and Scatton, B. (1982): Brain Res. 252: 77–89.CrossRefGoogle Scholar
  22. 22.
    McGeer, P.L., McGeer, E.G., Sherer, U. and Singh, K. (1977): Brain Res. 128: 369–373.CrossRefGoogle Scholar
  23. 23.
    Ponzio, F. and Jonsson, G. (1979): J. Neurochem. 32: 129–132.CrossRefGoogle Scholar
  24. 24.
    Racagni, G., Trabucchi, M. and Cheney, D.L. (1975): NaunynSchmiedeberg’s Arch. Pharmacol. 290: 99–105.Google Scholar
  25. 25.
    Raiteri, M., Marchi, M. and Maura, G. (1982): Eur. J. Pharmacol. 83: 127–129.CrossRefGoogle Scholar
  26. 26.
    Saelens, J.K., Allen, M.P. and Simke, J.P. (1970): Arch. Int. Pharmacodyn. 186: 279–286.Google Scholar
  27. 27.
    Simon, J.R. (1982): Life Sci. 31: 1501–1508.CrossRefGoogle Scholar
  28. 28.
    Spencer, H.J., Gribkoff, V.K., Cotman, C.W. and Lynch, G.S. (1976): Brain Res. 105: 4 71–481.Google Scholar
  29. 29.
    Vezzani, A., Zatta, A., Ladinsky, H., Caccia, S., Garattini, S. and Consolo, S. (1982). Biochem. Pharmacol. 31: 1693–1698.CrossRefGoogle Scholar
  30. 30.
    Webster, K.F. (1961): J. Anat. 95: 532–544.Google Scholar
  31. 31.
    Wood, P.L., Moroni, F., Cheney, D.L. and Costa, E. (1979): Neurosci. Letters 12: 349–354.CrossRefGoogle Scholar
  32. 32.
    Yeterian, E.H. and Van Hoesen, G.W. (1978): Brain Res. 139: 43–63.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • H. Ladinsky
    • 1
  • M. Sieklucka
    • 2
  • F. Fiorentini
    • 1
  • G. Forloni
    • 1
  • P. Cicioni
    • 1
  • S. Consolo
    • 1
  1. 1.Laboratory of Cholinergic NeuropharmacologyMario Negri Institute for Pharmacological ResearchMilanItaly
  2. 2.Department of PharmacologyInstitute of Clinical Pathology, Medical SchoolLublinPoland

Personalised recommendations