GABAA VS. GABAB Modulation of Septal-Hippocampal Interconnections

  • W. D. Blaker
  • D. L. Cheney
  • E. Costa
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


In rats, intraseptal injection of the GABA receptor agonist muscimol decreases the turnover rate of acetylcholine (TRACh) in the hippocampus in a dose-dependent and bicuculline-reversible manner (15). This is in keeping with the histochemical evidence of a substantial GABAergic innervation of the septal nuclei (11). Furthermore, stimulation of other septal neurotransmitter receptors (e.g., dopamine and beta-endorphin) can decrease the hippocampal TRACh via an activation of GABAergic interneurons (for review see 4). Conversely, some neurotransmitters, such as substance P, modulate the cholinergic activity of this pathway independently from GABAergic mechanisms.


Kainic Acid GABAB Receptor GABAergic Interneuron Medial Septum Lateral Septum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ben-Ari, Y., Krnjevic, K., Reinhardt, W. and Ropert, N. (1981): Neurosci. 6: 2475–2484.CrossRefGoogle Scholar
  2. 2.
    Blaker, W.D., Cheney, D.L., Gandolfi, O. and Costa, E. (1983): J. Pharm. Exp. Ther. 225: 361–365.Google Scholar
  3. 3.
    Bowery, N.G. (1982): Trends in Pharmacological Sciences 3: 400–403.CrossRefGoogle Scholar
  4. 4.
    Costa, E., Panula, P., Thompson, H.K. and Cheney, D.L. (1983): Life Sci. 32: 165–179.CrossRefGoogle Scholar
  5. 5.
    Fonnum, F. and Walaas, I. (1978): J. Neurochem. 31: 1173–1181.CrossRefGoogle Scholar
  6. 6.
    Grossman, S.P. (1978): In Functions of the Septo-Hippocampal System, Ciba Foundation Symposium, K. Elliot and J. Whelan (eds.) Elsevier/North Holland, New York, pp. 227–273.Google Scholar
  7. 7.
    Krnjevic, K. and Ropert, N. (1981): Can. J. Physiol. Pharmacol. 59: 911–914.CrossRefGoogle Scholar
  8. 8.
    Lorens,S.A. and Kondo,C.Y. (1969): Physiol. Behay. 4: 729–732.CrossRefGoogle Scholar
  9. 9.
    Malthe-Sorenssen,D., Skride,K.K. and Fonnum, F. (1980): Neurosci. 5: 127–133.CrossRefGoogle Scholar
  10. 10.
    McKinney, M., Coyle, J.T. and Hedreen, J.C. (1983): J. Comp. Neurol. 217: 103–121.CrossRefGoogle Scholar
  11. 11.
    Panula, P., Reveulta, A.V., Cheney, D.L., Wu, J.Y. and Costa, E. (1983): J. Comp. Neurol. 222: 69–80.CrossRefGoogle Scholar
  12. 12.
    Swanson, L.W. and Cowan, W.M. (1976): J. Comp. Neurol. 172: 49–84.CrossRefGoogle Scholar
  13. 13.
    Swanson, L.W. and Cowan, W.M. (1979): J. Comp. Neurol. 186: 621–656.CrossRefGoogle Scholar
  14. 14.
    Wood, P.L. and Cheney, D.L. (1979): Can. J. Physiol. Pharmacol. 57: 404–411.CrossRefGoogle Scholar
  15. 15.
    Wood, P.L., Cheney, D.L. and Costa, E. (1979): Neurosci. 4: 1479–1484.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • W. D. Blaker
    • 1
  • D. L. Cheney
    • 2
  • E. Costa
    • 3
  1. 1.Virginia-Maryland Regional, College of Veterinary MedicineVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Neuroscience SubdivisionCiba Geigy CorporationSummitUSA
  3. 3.Laboratory of Preclinical Pharmacology, National Institute of Mental HealthSaint Elizabeths HospitalUSA

Personalised recommendations