The Efflux of Choline from Nerve Cells: Mediation by Ionic Gradients and Functional Exchange of Choline from Glia to Neurons

  • D. Hoffmann
  • S. Mykita
  • B. Ferret
  • R. Massarelli
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


The availability of the precursors choline and acetyl Coenzyme A has been considered as one of the essential components for regulation of acetylcholine metabolism (12). One of the main pathways for the supply of choline to neurons for cholinergic metabolism is its transport across the plasma membrane. Recently, however, it has been shown that: a) choline can be synthesized in nerve cells (neurons and glia) by stepwise methylation of ethanolamine, and acetylcholine may be synthesized via this methylation pathway (8); and b) choline may be released from nerve cells following a mechanism which can be stimulated by, and is dependent upon, ions in a manner which is the mirror image of its flow into the cell (13).


Glial Cell Nerve Cell Incubation Medium Ionic Gradient Acetyl Coenzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ansell, G.B. and Spanner, S. (1978): In Cholinergic Mechanisms and Psychovharmacology (ed) D.J. Jenden, Plenum Press, New York, pp. 431–445.Google Scholar
  2. 2.
    Booher, J. and Sensenbrenner, M. (1972): Neurobiology 2: 97–105.Google Scholar
  3. 3.
    Dross, K. and Kewitz, H. (1972): N.S. Arch. Pharmakol. 274: 91–106.CrossRefGoogle Scholar
  4. 4.
    Kuhar, M.J., Sethy, V.H., Roth, R.H. and Aghajanian, G.K. (1973): J. Neurochem. 20: 581–593.CrossRefGoogle Scholar
  5. 5.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951): J. Biol. Chem. 193: 265–275.Google Scholar
  6. 6.
    Massarelli, R. and Wong, T.Y. (1981): In Cholinergic Mechanisms (eds) G. Pepeu and H. Ladinski, Plenum Press, New York, pp. 511–520.Google Scholar
  7. 7.
    Massarelli, R., Gorio, A. and Dreyfus, H. (1982): J. Physiol. (Paris) 78: 392–398.Google Scholar
  8. 8.
    Massarelli, R., Dainous, F., Freysz, L., Dreyfus, H., Mozzi, R., Floridi, A., Siepi, D. and Porcellati, G. (1982): In Basic and Clinical Aspects of Molecular Neurobiology (eds) A.M. GiuffridaStella, G. Gombos, G. Benzi and M.S. Bachelard, pp. 147–155.Google Scholar
  9. 9.
    Pardridge, W.M., Cornford, E.M., Braun, L.D. and Oldendorf, W.-H. (1979): In Nutrition and the Brain (eds) A. Barbeau, J.H. Growdon and R.J. Wurtman, Raven Press, New York, Vol. 5,pp. 25–34.Google Scholar
  10. 10.
    Pettman, B., Louis, J.C. and Sensenbrenner, M. (1979): Nature 281: 378–380.CrossRefGoogle Scholar
  11. 11.
    Saelens, J.K. and Simke, J.P. (1976): In Biology of Cholinergic Function (eds) A.M. Goldberg and I. Hanin, Raven Press, New York, pp. 661–681.Google Scholar
  12. 12.
    Tucek, S. (1978): Acetylcholine Synthesis in Neurons, Chapman and Hall, London, pp. 62–123.Google Scholar
  13. 13.
    Wong, T.Y., Hoffmann, D., Dreyfus, H., Louis, J.C. and Massarelli, R. (1982): Neurosci. Lett. 29: 293–296.CrossRefGoogle Scholar
  14. 14.
    Yamamura, H.I. and Snyder, S.H. (1972): Science 178: 626.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. Hoffmann
    • 1
  • S. Mykita
    • 1
  • B. Ferret
    • 1
  • R. Massarelli
    • 1
  1. 1.Centre de neurochimie du CNRS and U44 de l’INSERMStrasbourg CedexFrance

Personalised recommendations