Advertisement

Inhibition of Acetylcholine Synthesis in Vitro

  • J. J. O’Neill
  • P. H. Doukas
  • F. Ricciardi
  • B. Capacio
  • R. Leech
  • G. H. Sterling
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

The concentration of acetylcholine (ACh) in brain is maintained within narrow limits even though the turnover rate is several fold that estimated for other neurotransmitters (16). The precise mechanisms regulating ACh metabolism are complex and there is considerable disagreement as to which factor(s) is rate-limiting to synthesis. Regulation of ACh levels can be separated into several categories, no one of which by itself is controlling but collectively can regulate ACh synthesis: 1) Choline acetyltransferase (ChAT) activity; 2) Availability of its precursors, choline or AcCoA and; 3) Indirectly, by changes in ACh release.

Keywords

Methyl Iodide Choline Chloride Choline Concentration Acetylcholine Synthesis Form Charge Transfer Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, B.R. and Gibson, R.E. (1971; 1972 ): J. Med. Chem. 14: 315–322.CrossRefGoogle Scholar
  2. 2.
    Browning, E.T. and Shulman, M.P. (1968): J. Neurochem. 15: 1391–1405.CrossRefGoogle Scholar
  3. 3.
    Cavallito, C.J., White, H.L., Yun, H.S. and Foldes, F.F. (1970): In Drugs and Cholinergic Mechanisms in the CNS (eds) F. Heilbronn and A. Winter, Stockholm, Sweden, pp. 97–116.Google Scholar
  4. 4.
    Cavallito, C.J., Rittman, A.W. and White, H.L. (1971): J. Med. Chem. 14: 230–233.CrossRefGoogle Scholar
  5. 5.
    Currier, S.F. and Mautner, H.G. (1974): Proc. Nat. Acad. Sci. 71: 3355–3358.CrossRefGoogle Scholar
  6. 6.
    Domino, E.F., Mohrman, M.E., Wilson, A.E. and Haarstad, V.B. (1973): Neuropharmacol. 12: 549–561.CrossRefGoogle Scholar
  7. 7.
    Doukas, P.H. (1975): In Drug Design 5 (ed) E.J. Ariens, Academic Press, pp. 133–167.Google Scholar
  8. 8.
    Dowdall, M.J. (1978): In Cholinergic Mechanisms and Psycho-pharmacology (eds) D.J. Jenden, Plenum, New York, pp. 359–375.Google Scholar
  9. 9.
    Fisher, A. and Hanin, I. (1980): Life Sci. 27: 1615–1634.CrossRefGoogle Scholar
  10. 10.
    Freeman, J.J., Choi, R. and Jenden, D.J. (1975): J. Neurochem. 24: 729–734.Google Scholar
  11. 11.
    Gibson, G.E. and Blass,J.P. (1976): J. Neurochem. 26: 1073–1078.CrossRefGoogle Scholar
  12. 12.
    Grob, C.A. (1960): Chem. Abstr. 54: 8862d.Google Scholar
  13. 13.
    Hansch, C., Leo, A.J. (1979): Substituent Constants for Correlation Analysis in Chemistry and Biology, (eds) Wiley, Appendix II, p. 249.Google Scholar
  14. 14.
    Harris, L.W., Stitcher, D.L. and Heyl, W.C. (1982): Life Sci. 30: 1867–1873.CrossRefGoogle Scholar
  15. 15.
    Hersh, L.B. and Peet, M. (1977): J. Biol. Chem. 252: 4796–4802.Google Scholar
  16. 16.
    Jope, R.S. (1979): Brain Res. Rev. 1: 313–344.CrossRefGoogle Scholar
  17. 17.
    Kim, W.H. (1978): Ph.D. Thesis, Temple University. Non Benzenoid Aromatic Enzyme Inhibitors: Inhibition of Horse Snm Butyrylcholinesterase by Azulene and Ferrocene Derivatives.Google Scholar
  18. 18.
    Leo, A.J., Hausch, C. and Elkins, D. (1971): Chem. Rev. 71: 590.CrossRefGoogle Scholar
  19. 19.
    Malthe-Sorenssen, D., Andersen, R.A. and Fonnum, F. (1974): Biochem. Pharmacol. 23: 577–586.CrossRefGoogle Scholar
  20. 20.
    McCaman, R.E. and Hunt, J.M. (1965): J. Neurochem. 12: 253–259.CrossRefGoogle Scholar
  21. 21.
    O’Neill, J.J., Simon, S.H. and Cummins, J.T. (1963): Biochem. Pharmac. 12: 809–820.CrossRefGoogle Scholar
  22. 22.
    Peterson, C. and Gibson, G.E. (1982): J. Pharmacol. and Exp. Ther. 222: 576–582.Google Scholar
  23. 23.
    Rowell, P.P. and Chiou, C.Y. (1976): Biochem. Pharmacol. 25: 1093–1099.CrossRefGoogle Scholar
  24. 24.
    Rylett, B.J. and Colhoun, E.H. (1979): J. Neurochem. 32: 553–559.CrossRefGoogle Scholar
  25. 25.
    Schulman, J.M., Sabio, M.L. and Disch, R.L. (1983): J. Med. Chem. 26: 817–823.CrossRefGoogle Scholar
  26. 26.
    Schrier,B.K. and Shuster, L. (1967): J. Neurochem. 14: 977–985.CrossRefGoogle Scholar
  27. 27.
    Smart, L.A. (1983): J. Med. Chem. 26: 104–107.CrossRefGoogle Scholar
  28. 28.
    Smith, J.C., Cavallito, C.J. and Foldes, F.F. (1967): Biochem. Pharmacol. 16: 2438–2441.CrossRefGoogle Scholar
  29. 29.
    Sterling, G.H. and O’Neill, J.J. (1978): J. Neurochem. 31: 525–530.CrossRefGoogle Scholar
  30. 30.
    Warawa, E.J., Mueller, N.J. and Jules, R.J. (1974): J. Med. Chem. 17: 497–501.CrossRefGoogle Scholar
  31. 31.
    White, H.L. and Wu, J.C. (1973): J. Neurochem. 20: 297–307.CrossRefGoogle Scholar
  32. 32.
    Yamamura, H.I. and Snyder, S.H. (1974): Proc. Natl. Acad. Sci. U.S.A. 71: 1725–1729.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. J. O’Neill
    • 1
  • P. H. Doukas
    • 1
  • F. Ricciardi
    • 1
  • B. Capacio
    • 1
  • R. Leech
    • 1
  • G. H. Sterling
    • 2
  1. 1.Department of PharmacologyTemple University School of MedicinePhiladelphiaUSA
  2. 2.Department of PharmacologyHahnemann University School of MedicinePhiladelphiaUSA

Personalised recommendations