Mechanisms of Acetylcholine Synthesis: Coupling with Choline Transport

  • R. J. Rylett
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


Mechanisms regulating acetylcholine (ACh) synthesis at the cholinergic nerve terminal have not been resolved. Clearly, choline utilized in the synthesis of ACh is derived from an extraneuronal source rather than being synthesized de novo within the cholinergic neuron (12). A number of investigators have demonstrated that the supply of exogenous choline to the nerve ending by sodium-dependent high-affinity choline carriers may be both rate-limiting and regulatory in the synthesis of ACh (4, 5, 9, 14, 29, 34) with a high percentage of the transported choline being metabolized to ACh (5, 35). Contradictory evidence has, however, been presented recently indicating that in guinea-pig brain synaptosomes choline taken into the nerve ending by high- affinity choline carriers makes only a minor contribution as precursor for ACh synthesis (16, 20). Whereas it has been reported that the major source of choline for ACh synthesis is derived from preexisting cytoplasmic choline pools in guinea-pig brain synaptosomes, evidence has been presented that in rat brain synaptosomes synthesis of ACh utilizing a cytoplasmic pool of choline as precursor could not be measured (32).


Irreversible Inhibition ChAT Activity Synaptosomal Membrane Choline Transport Acetylcholine Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atterwill, C.K. and Prince, A.K. (1977): Brit. J. Pharmacol. 61:111P-112 P.Google Scholar
  2. 2.
    Atterwill, C.K. and Prince, A.K. (1978): J. Neurochem. 31: 732–740.CrossRefGoogle Scholar
  3. 3.
    Atterwill, C.K. and Prince, A.K. (1978): Brit. J. Pharmacol. 62: 398 P.Google Scholar
  4. 4.
    Atweh, S., Simon, J.R. and Kuhar, M.J. (1975): Life Sci. 17: 1535–1544.CrossRefGoogle Scholar
  5. 5.
    Barker, L. A. and Mittag, T.W. (1975): J. Pharmacol. Exp. Ther. 192: 86–94.Google Scholar
  6. 6.
    Barker, L. A. and Mittag, T.W. (1976): Molec. Pharmacol. 25: 1931–1933.Google Scholar
  7. 7.
    Barker, L.A., Mittag, T.W. and Krespan, B. (1978): In Choli¬nergic Mechanisms and Psychopharmacology (ed) D.J. Jenden, New York, Plenum Press, pp. 465–481.Google Scholar
  8. 8.
    Benishin, C.G. and Carroll, P.T. (1983): J. Neurochem. 41:1030¬1039.Google Scholar
  9. 9.
    Eisentadt, M.L., Treistman, S.N. and Schwartz, J.H. (1975): J. Gen. Physiol. 65: 275–291.Google Scholar
  10. 10.
    Fonnum, F. and Malthe-Sorenssen, D. (1972): In Biochemical and Pharmacological Mechanisms Underlying Behaviour (eds) P.B. Bradley and R.W. Brimblecombe, Prog. Brain Res. 36: 13–27.CrossRefGoogle Scholar
  11. 11.
    Fonnum, F. and Malthe-Sorenssen, D. (1973): J. Neurochem. 20,1351–1359.Google Scholar
  12. 12.
    Freeman, J.J. and Jenden, D.J. (1976): Life Sci. 19: 949–962.CrossRefGoogle Scholar
  13. 13.
    Jope, R.S. (1979): Brain Res. Rev. 1: 313–344.CrossRefGoogle Scholar
  14. 14.
    Jenden, D.J., Jope, R.S. and Weiler, M.H. (1976): Science 194: 635–637.CrossRefGoogle Scholar
  15. 15.
    Jope, R.S. and Jenden, D.J. (1977): Life Sci. 20: 1384–1392.CrossRefGoogle Scholar
  16. 16.
    Kessler, P.D. and Marchbanks, R.M. (1979): Nature 279: 542–544.CrossRefGoogle Scholar
  17. 17.
    Kuczenski, R., Segal, D.S. and Mandell, A.J. (1975): J. Neuro¬chem. 24: 39–45.CrossRefGoogle Scholar
  18. 18.
    Malthe-Sorenssen, D. (1976): J. Neurochem. 26: 861–865.CrossRefGoogle Scholar
  19. 19.
    Malthe-Sorenssen, D. and Fonnum, F. (1972): Biochem. J. 127: 229–236.Google Scholar
  20. 20.
    Marchbanks, R.M. and Kessler, P.D. (1982): J. Neurochem. 279: 542–544.Google Scholar
  21. 21.
    Masters, C.J. (1978): Trends Biochem. Sci. 3: 206–209.CrossRefGoogle Scholar
  22. 22.
    Polsky, R. 445:25–42. and Shuster, L. (1976): Biochim. Biophys. Acta.Google Scholar
  23. 23.
    Rylett, R.J. (1980): Ph.D. Thesis, University of Western Ontario, London, Canada. Actions of Choline Mustard Aziridinium Ion at the Cholinergic Nerve Terminal.Google Scholar
  24. 24.
    Rylett, R.J. and Colhoun, E.H. (1979): J. Neurochem. 32: 553–558.CrossRefGoogle Scholar
  25. 25.
    Rylett, R.J. and Colhoun, E.H. (1980): J. Neurochem. 34: 713–719.CrossRefGoogle Scholar
  26. 26.
    Rylett, R.J. and Colhoun, E.H. (1980): Life Sci. 26: 909–914.CrossRefGoogle Scholar
  27. 27.
    Rylett, R.J. and Colhoun, E.H. (1984): J. Neurochem. 43: 787–795.CrossRefGoogle Scholar
  28. 28.
    Rylett, R.J., Carlton, T.J. and Colhoun, E.H. (1983): J. Soc. Neurochem. 9: 970.Google Scholar
  29. 29.
    Simon, J.R. and Kuhar, M.J. (1975): Nature 255: 162–163.CrossRefGoogle Scholar
  30. 30.
    Smith, C.P. and Carroll, P.T. (1980): Brain Res. 185: 363–371.CrossRefGoogle Scholar
  31. 31.
    Suszkiw, J.B. and Pilar, G.B. (1976): J. Neurochem. 26: 1133–1138.CrossRefGoogle Scholar
  32. 32.
    Weiler, M.H., Gundersen, C.B. and Jenden, D.J. (1981): J.Neuro¬chem. 36: 1802–1812.CrossRefGoogle Scholar
  33. 33.
    Wilson, I.A. and Kitz,R. (1962): J. Biol. Chem. 237: 3245–3249.Google Scholar
  34. 34.
    Yamamura, H.I. and Snyder, S.H. (1972): Science 178: 626–628.CrossRefGoogle Scholar
  35. 35.
    Yamamura, H.I. and Snyder, S.H. (1973): J. Neurochem. 21: 1355–1374CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. J. Rylett
    • 1
  1. 1.Department of Physiology Medical Sciences BuildingUniversity of Western OntarioLondonCanada

Personalised recommendations