Advertisement

Effects of the Combined Treatment of Rats with Fluphenazine and Choline or Lecithin on the Striatal Cholinergic and Dopaminergic System

  • F. Flentge
  • D. Arst
  • B. H. Westerink
  • M. J. Zigmond
  • I. Hanin
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

It has been reported that the acute administration of choline (Ch) or its dietary precursor, lecithin (phosphatidylcholine; PCh) results in an increase in the steady-state concentration of acetylcholine (4, 11–13, 17). This increase was interpreted to be due to an enhanced ACh synthesis. Many clinical experiments have since been performed using Ch or PCh loading, based on the hypothesis that these agents would increase ACh levels, leading to an enhanced ACh release (for review see Bartus et al.; 2). In recent years, however, a number of groups have not been able to confirm the original finding of an increase in ACh levels in the brain or brain regions in rats or mice, after Ch or PCh administration (3, 7, 14, 18–23). Furthermore, no change in the synthesis rate of ACh has been observed after Ch loading (3, 6). Nevertheless, several reports have demonstrated that exogenous Ch or PCh could increase ACh content under conditions of increased cholinergic activity. In these investigations an attempt was made to increase activity by treatment of the animals with drugs like atropine, fluphenazine and pentylenetetrazol. It was observed that the decrease in ACh levels produced by these drugs in one or more regions of the brain could be attenuated by pretreatment of the animals with Ch or PCh (14, 19, 21–23, but see also 20 which failed to confirm these results).

Keywords

High Pressure Liquid Chromatographic DOPAC Level Dietary Precursor Western Psychiatric Institute Striatal DOPAC 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aquilonius, S.M., Flentge, F., Schuberth, J., Sparf, B. and Sundwall, A. (1973): J. Neurochem. 20: 1509–1521.CrossRefGoogle Scholar
  2. 2.
    Bartus, R.T., Dean, R.L., Beer, B. and Lippa, A.S. (1982): Science 217: 408–417.CrossRefGoogle Scholar
  3. 3.
    Brunello, N., Cheney, D.L. and Costa, E. (1982): J. Neurochem. 38: 1160–1163CrossRefGoogle Scholar
  4. 4.
    Cohen, E.L. and Wurtman, R.J. (1976): Science 191: 561–562.CrossRefGoogle Scholar
  5. 5.
    Conner, J.D. (1970): J. Physiol. Lond. 208: 691–703.Google Scholar
  6. 6.
    Eckernas, S.A., Sahlstrom, L. and Aquilonius, S.M. (1977): Acta Physiol. Scand. 101: 404–410.CrossRefGoogle Scholar
  7. 7.
    Flentge, F. and Van den Berg, C.J. (1979): J. Neurochem. 32: 1331–1333.CrossRefGoogle Scholar
  8. 8.
    Goldberg, A.M. and McCaman, R.E. (1974): In Choline and Acetylcholine: Handbook of Chemical Assay Methods. (ed) I. Hanin, Raven Press, New York, pp. 47–63.Google Scholar
  9. 9.
    Hanin, I. and Skinner, R.F. (1975): Anal. Biochem. 66: 568–583.CrossRefGoogle Scholar
  10. 10.
    Hattori, T., Singh, V.K., McGeer, E.G. and McGeer, P.L. (1976): Brain Res. 102: 164–173.CrossRefGoogle Scholar
  11. 11.
    Haubrich, D.R., Wang, P.F.L., Clody, D.E. and Wedeking, P.W. (1975): Life Sci. 17: 975–980.CrossRefGoogle Scholar
  12. 12.
    Hirsch, M.J. and Wurtman, R.J. (1978): Science 202: 223–225.CrossRefGoogle Scholar
  13. 13.
    Hirsch, M.J., Growdon, J.H. and Wurtman, R.J. (1977): Brain Res. 125: 383–385.CrossRefGoogle Scholar
  14. 14.
    Jope, R.S. (1982): J. Pharmacol. Exptl. Therap. 220: 322–328.Google Scholar
  15. 15.
    Keller, R., Oke, A., Mefford, I. and Adams, R.N. (1976): Life Sciences 19: 995–1004.CrossRefGoogle Scholar
  16. 16.
    Korf, J., Sebens, J.B., Flentge, F. and Van Der Werf, J.F. (1985): J. Neurochem. 44: 314–318.CrossRefGoogle Scholar
  17. 17.
    Magil, S.G., Zeisel, S.H. and Wurtman, R.J. (1981): J. Nutrition 111: 166–170.Google Scholar
  18. 18.
    Pedata, F., Wieraszko, A. and Pepeu, G. (1979): Pharmac. Res. Commun. 9: 755–761.CrossRefGoogle Scholar
  19. 19.
    Schmidt, D.E. and Wecker, L. (1981): Neuropharmacology 20: 535–539.CrossRefGoogle Scholar
  20. 20.
    Sherman, K.A., Zigmond, M. J. and Hanin, I. (1981): Neuropharacology 20: 921–924.CrossRefGoogle Scholar
  21. 21.
    Trommer, B.A., Schmidt, D. E. and Wecker, L. (1982): J. Neurochem. 39: 1704–1709.CrossRefGoogle Scholar
  22. 22.
    Wecker, L. and Schmidt, D.E. (1980): Brain Res. 184: 234–238.CrossRefGoogle Scholar
  23. 23.
    Wecker, L., Dettbarn, W.D. and Schmidt, D.E. (1978): Science 199: 86–87.CrossRefGoogle Scholar
  24. 24.
    Westerink, B.H.C. and Mulder, T.B.A. (1981): J. Neurochem. 36: 1449–1462.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • F. Flentge
    • 1
  • D. Arst
    • 2
  • B. H. Westerink
    • 3
  • M. J. Zigmond
    • 2
  • I. Hanin
    • 4
  1. 1.Departments of Biological PsychiatryUniversity of GroningenGroningenThe Netherlands
  2. 2.Biological SciencesUniversity of PittsburghPittsburghUSA
  3. 3.Pharmaceutical and Analytical ChemistryUniversity of GroningenGroningenThe Netherlands
  4. 4.Departments of PsychiatryUniversity of PittsburghPittsburghUSA

Personalised recommendations