The Utilization of Supplemental Choline by Brain

  • L. Wecker
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


The disposition and metabolism of choline and its utilization for the synthesis of acetylcholine (ACh) in brain have been the subject of numerous investigations (for reviews see 2, 3, 4, 18). Although it is well established that following administration, choline is rapidly incorporated into ACh in brain (11, 20, 28, 29), the ability of supplemental choline to increase the steady-state concentration of ACh is questionable. Studies in my laboratory have indicated that the acute administration of choline does not increase the concentration of ACh in brain under “normal” biochemical and physiological conditions, but it does provide choline that can be used to support the synthesis of ACh when there is an increased demand for the precursor, i.e., when the activity of central cholinergic neurons is increased (32, 36). Choline, administered either as a salt or in the form of phosphatidylcholine (PTC), prevents the depletion of ACh in brain induced by atropine, fluphenazine or pentylenetetrazol, when choline is administered acutely prior to these agents that increase cholinergic neuronal activity (14, 21, 27, 31, 33, 38). In addition, prior administration of choline has been shown to prevent opiate withdrawal-induced decreases in the levels of ACh in hippocampus (8). Hence, data suggest that choline enhances the synthesis of ACh during conditions of drug-induced increases in neuronal demand. This idea is further substantiated by studies in the perfused hemidiaphragm preparation, indicating that the release of ACh following phrenic nerve stimulation is enhanced by the presence of choline in the perfusate only when the rate of nerve stimulation is increased (7). Hence, most data, with the exception of one report in which large doses of choline were used that may have decreased the turnover of ACh (30), support the hypothesis that supplemental choline, via acute administration, is used to enhance the synthesis of ACh under conditions of increased neuronal demand.


Choline Chloride Dietary Regimen Phrenic Nerve Stimulation Free Choline Choline Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ansell, G.B. and Spanner, S. (1968): Biochem. J. 110: 201–206.Google Scholar
  2. 2.
    Ansell,G.B. and Spanner, S. (1975): In: Cholinergic Mechanisms (ed) P.G. Waser, Raven Press, New York, pp. 117–129.Google Scholar
  3. 3.
    Ansell, G.B. and Spanner S. (1977): In: Cholinergic Mechanisms and Psychopharmacology (ed) D.J. Jenden, Plenum Press, New York, pp. 431–445.Google Scholar
  4. 4.
    Ansell, G.B. and Spanner, S. (1979): In: Nutrition and the Brain. Vol. 5 (eds) A. Barbeau, J.H. Growdon and R.J. Wurtman, Raven Press, New York, pp. 35–46.Google Scholar
  5. 5.
    Aquilonius, S.M., Flentge, F., Schuberth, J., Sparf, B. and Sundwall, A. (1973): J. Neurochem. 20: 1509–1521.CrossRefGoogle Scholar
  6. 6.
    Bhatnagar, S.P. and MacIntosh, F.C. (1967): Canad. J. Physiol. Pharmacol. 45: 249–268.CrossRefGoogle Scholar
  7. 7.
    Bierkamper, G.G. and Goldberg, A.M. (1979): In: Nutrition and the Brain. Vol. 5 (eds) A. Barbeau, J.H. Growdon and R.J. Wurtman, Raven Press, New York, pp. 243–251.Google Scholar
  8. 8.
    Botticelli, L.J. and Wurtman, R. J. (1981): Brain Research 210: 479–484.CrossRefGoogle Scholar
  9. 9.
    Browning, E.T. (1971): Biochem. Biophys. Res. Comm. 45:1586–1590.Google Scholar
  10. 10.
    Chakrin, L.W. and Whittaker, V.P. (1969): Biochem. J. 113: 97107.Google Scholar
  11. 11.
    Choi, R.L., Freeman, J.J. and Jenden, D.J. (1975): J. Neurochem. 24: 735–741.Google Scholar
  12. 12.
    Collier, B., Poon, P. and Salehmoghaddam, S. (1972): J. Neuro-chem. 19: 51–60.Google Scholar
  13. 13.
    Diamond, I. (1971): Arch. Neurol. 24: 333–339.CrossRefGoogle Scholar
  14. 14.
    Dolezal, V. and Tucek, S. (1982): Brain Research 240: 285–293CrossRefGoogle Scholar
  15. 15.
    Dowdall, M.J., Barker, L.A. and Whittaker, V.P. (1972): 130 1081–1094.Google Scholar
  16. 16.
    Dross, K. and Kewitz, H. (1972): Naunyn-Schmiedeberg’s Arch Pharmacol. 274: 91–106.CrossRefGoogle Scholar
  17. 17.
    Folch, J., Lees, M. and Stanley, G.H.S. (1957): J. Biol. Chem 226: 497–509.Google Scholar
  18. 18.
    Freeman, J.J. and Jenden,D.J. (1976): Life Sciences 19: 949–962.CrossRefGoogle Scholar
  19. 19.
    Gray, E.G. and Whittaker,V.P. (1962): J. Anat. ( London ) 96: 79–88.Google Scholar
  20. 20.
    Hanin, I. and Schuberth, J. (1974): J. Neurochem. 23: 819–824.CrossRefGoogle Scholar
  21. 21.
    Jope, R.S. (1982): J. Pharmacol. Exptl. Therap. 220: 322–328.Google Scholar
  22. 22.
    Jope, R.S. and Jenden, D.J. (1979): J. Neurosci. Res. 4: 69–82.Google Scholar
  23. 23.
    Kosh, J.W., Dick, R.M. and Freeman, J.J. (1980): Life Sciences 21: 1953–1959.CrossRefGoogle Scholar
  24. 24.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951): J. Biol. Chem. 193: 265–275.Google Scholar
  25. 25.
    Nordberg, A. (1977): Acta Physiol. Scand. Suppl. 445.Google Scholar
  26. 26.
    Rouser, G., Fleischer, S. and Yamamoto, A. (1970): Lipids 5: 494–496.CrossRefGoogle Scholar
  27. 27.
    Schmidt, D.E. and Wecker, L. (1981): Neuropharmacology 20:535–539.Google Scholar
  28. 28.
    Schuberth, J., Sparf, B. and Sundwall, A. (1969): J. Neurochem. 16: 695–700.CrossRefGoogle Scholar
  29. 29.
    Schuberth, J., Sparf, B. and Sundwall, A. (1970): J. Neurochem. 17: 461–468.CrossRefGoogle Scholar
  30. 30.
    Sherman, K.A., Zigmond, M.J. and Hanin, I. (1981): Neuropharmacology 20: 921–924.CrossRefGoogle Scholar
  31. 31.
    Trommer, B.A., Schmidt, D.E. and Wecker, L. (1982): J. Neurochem. 39: 1704–1709.CrossRefGoogle Scholar
  32. 32.
    Wecker, L. and Dettbarn,W-D. (1979): J. Neurochem. 32: 961–967.CrossRefGoogle Scholar
  33. 33.
    Wecker, L., Dettbarn, W-D. and Schmidt, D.E. (1978): Science 199: 86–87.CrossRefGoogle Scholar
  34. 34.
    Wecker, L., Ehlert, F.J., Speth, R.C., Trommer, B.A. and Yamamura, H.I. (1984): in preparation.Google Scholar
  35. 35.
    Wecker, L., Flynn, C.J., Stouse, M.R. and Trommer, B.A. (1982): Drug-Nutrient Interactions 1: 125–130.Google Scholar
  36. 36.
    Wecker, L. and Goldberg, A.M. (1981): In: Cholinergic Mechanisms: Phylogenetic Aspects Central and Peripheral Synapses. and Clinical Significance (eds) G. Pepeu and H. Ladinsky, Plenum Press, New York, pp. 451–461.Google Scholar
  37. 37.
    Wecker, L. and Schmidt, D.E. (1979): Life Sciences 25: 375–384.CrossRefGoogle Scholar
  38. 38.
    Wecker, L. and Schmidt, D.E. (1980): Brain Research 184: 234–238.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • L. Wecker
    • 1
  1. 1.Departments of Pharmacology and PsychiatryLouisiana State University Medical CenterNew OrleansUSA

Personalised recommendations