Advertisement

Factors Which Influence the Availability of Choline to Brain

  • S. H. Zeisel
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

Choline is necessary for normal function of the mammalian organism. It is a precursor for the biosynthesis of the cholinephospholipids phosphatidylcholine (PC), sphingomyelin (SM), and choline plasmalogen, which are important constituents of brain membranes [for example, PC contributes eight to fifteen percent of the dry weight of brain (1)]. Free choline is readily accumulated by brain neurons which utilize it as a precursor for the biosynthesis of acetylcholine (ACh; 45). Choline acetyltransferase is not saturated with choline at normal brain concentrations of this amine (41). Therefore, the availability of free choline to neurons directly influences the synthesis of ACh (14, 15, 27). Thus, it is obvious that large numbers of choline molecules must be used by brain for both the maintenance of structural integrity and for cholinergic neurotransmission. Despite this requirement, more unesterified (free) choline leaves the brain, in vivo, than enters it (1, 2, 13, 21). This results in jugular venous levels of free choline that are higher than those of arterial blood entering brain. These concentration differences range from 1 nmol/ml in humans (3) to 1–12 nmol/ml in rats (13, 21, 37). Where does all this free choline come from?

Keywords

Brain Homogenate Choline Concentration Free Choline Choline Ester Cytidine Triphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ansell, G.B. (1973): In: Form and Function of Phospholipids (Ansell, G.B., Hawthorne, J.N. and Dawson, R.M.C.,eds.),Elsevier, Amsterdam, pp. 377–422.Google Scholar
  2. 2.
    Ansell, G.B. and Spanner, S. (1982): In: Phospholipids in the Nervous System (Horrocks, L., Ansell, G. and Porcellati, G., eds.), Vol. 1, Raven, New York, pp. 137–144.Google Scholar
  3. 3.
    Aquilonius, S.M., Ceder, G., Lying-Tunell, U., Malmud, H.O., Schubert, J. (1975): Brain Res. 99: 430–433.CrossRefGoogle Scholar
  4. 4.
    Bazan, N.G. (1970): Biochim. Biophys. Acta 218: 1–10.Google Scholar
  5. 5.
    Bazan, N.G. (1971): Lipids 6: 211–212.CrossRefGoogle Scholar
  6. 6.
    Bazan, N.G., Bazan, H.E.P., Kennedy, W.G. and Joel, C.D. (1971): J. Neurochem. 18: 1387–1393.CrossRefGoogle Scholar
  7. 7.
    Bazan, N.G. and Turco, E.B.R. (1980): Adv. Neurol. 28: 197–205.Google Scholar
  8. 8.
    Blusztajn, J.K., Tacconi, M.T., Zeisel, S.H. and Wurtman, R.J. (1985): In: Physiological Role of Phospholipids in the Nervous System (Horrocks, L., ed.), Raven Press, New York (in press).Google Scholar
  9. 9.
    Blusztajn, J.K. and Wurtman, R.J. (1981): Nature 290: 417–418.CrossRefGoogle Scholar
  10. 10.
    Blusztajn, J.K., Zeisel, S.H. and Wurtman, R.J. (1979): Brain Res. 179: 319–327.CrossRefGoogle Scholar
  11. 11.
    Bremer, J. and Greenberg, D. (1961): Biochim. Biophys. Acta 46: 205–21.CrossRefGoogle Scholar
  12. 12.
    Browning, E.T. (1971): Biochim. Biophys. Res. Commun. 45: 1586–1590.CrossRefGoogle Scholar
  13. 13.
    Choi, R.L., Freeman, J.J. and Jenden, D.J. (1975): J. Neurochem. 24: 735–741.Google Scholar
  14. 14.
    Cohen, E.L. and Wurtman, R.J. (1975): Life Sci. 17: 1095–1102.CrossRefGoogle Scholar
  15. 15.
    Cohen, E.L. and Wurtman, R.J. (1976): Science 191: 561–562.CrossRefGoogle Scholar
  16. 16.
    Cooper, M.F. and Webster, G.R. (1970): J. Neurochem. 17: 1543–1554.CrossRefGoogle Scholar
  17. 17.
    Cornford, E.M., Braun, L.D. and Oldendorf, W.M. (1982): Pediatric Res. 16: 324–328.CrossRefGoogle Scholar
  18. 18.
    Crews, F.T., Hirata, F. and Axelrod, J. (1980): J. Neurochem. 34: 1491–1498.CrossRefGoogle Scholar
  19. 19.
    DeHass, G.H., Postema, N.M., Nieuwenhuizen, W. and VanDeenen, L.L.M. (1968): Biochim. Biophys. Acta 159: 103–117.Google Scholar
  20. 20.
    DeHass, G.H., Postema, N.M., Nieuwenhuizen, W. and VanDeenen, L.L.M. (1968) Biochim. Biophys. Acta 159: 118–129.Google Scholar
  21. 21.
    Dross, K. and Kewitz, H. (1972): N.S. Arch. Pharmacol. 274: 91–106.CrossRefGoogle Scholar
  22. 22.
    Fisher, S.K., Doherty, F.J. and Rowe, C.E. (1982): In: Phospholipids in the Nervous System (eds) L. Horrocks, G. B. Ansell and G. Porcellati), Vol. 1, Raven Press, New York, pp. 137–144.Google Scholar
  23. 23.
    Gatt, S. (1982): In: Phospholipids in the Nervous System (eds) L. Horrocks, G. B. Ansell and G. Porcellati, Vol. 1, Raven Press, New York, pp. 181–198.Google Scholar
  24. 24.
    Goldberg, A.M. and McCaman, R. (1973): J. Neurochem. 20: 1–8.CrossRefGoogle Scholar
  25. 25.
    Haubrich, D.R., Gerber, N., Pflueger, A.B. and Zweig, M. (1981): J. Neurochem. 36: 1409–1417.CrossRefGoogle Scholar
  26. 26.
    Haubrich, D.R., Wang, P.F.L., Chippendale, T. and Proctor, E. (1976): J. Neurochem. 27: 1305–1313.CrossRefGoogle Scholar
  27. 27.
    Haubrich, D.R., Wang, P.F.L., Clody, D.E. and Wedeking, P.W. (1975): Life Sci. 17: 975–980.CrossRefGoogle Scholar
  28. 28.
    Houtsmuller, U. (1979): In: Nutrition and the Brain, Vol. 5 (eds) R. Wurtman and J. Wurtman),Raven Press, New York, pp. 83–93.Google Scholar
  29. 29.
    Illingworth, D.R. and Portman, O.W. (1973): Physiol. Chem. Physics 5: 365–373.Google Scholar
  30. 30.
    Kosh, J.W., Dick, R.M. and Freeman, J.J. (1980): Life Sciences 27: 1953–1959.CrossRefGoogle Scholar
  31. 31.
    Lekim, D. and Betzing, H. (1976): Hoppe Seylers Z. Physiol. Chem. 357: 1321–1331.CrossRefGoogle Scholar
  32. 32.
    McCaman, R. and Stetzler, J. (1977): J. Neurochem. 28: 669–671.CrossRefGoogle Scholar
  33. 33.
    Mozzi, R. and Porcellati, G. (1979): FEBS Letters 100: 363–366.CrossRefGoogle Scholar
  34. 34.
    Oldendorf, W.H. and Braun, L.D. (1976): Brain Res. 113: 219–223.CrossRefGoogle Scholar
  35. 35.
    Pardridge, W.M., Cornford, E.M., Braun, L.D. and Oldendorf, W. (1979): In: Nutrition and the Brain, Vol. 5, (eds) A. Barbeau, J. Growdon and R. Wurtman), Raven Press, New York, pp. 25–34.Google Scholar
  36. 36.
    Parthasarathy, S., Subbaiah, P.V. and Ganguly, J. (1974): Biochem. J. 140: 503–508.Google Scholar
  37. 37.
    Spanner, S., Hall, R. and Ansell, G.B. (1976): Biochem. J. 154: 133–140.Google Scholar
  38. 38.
    Sun, G.Y., Manning, R. and Strosznajder, J. (1980): Neurochem. Res. 5: 1211–1219.CrossRefGoogle Scholar
  39. 39.
    Svanborg, A. and Svennerholm, L. (1961): Acta Med. Scand. 169: 43–49.CrossRefGoogle Scholar
  40. 40.
    Van den Bosch, H. (1980): Biochim. Biophys. Acta 604: 191–246.CrossRefGoogle Scholar
  41. 41.
    White, H.L. and Wu, J.C. (1973): J. Neurochem. 20: 297.CrossRefGoogle Scholar
  42. 42.
    Whittaker, V.P. and Barker, L.A. (1972): Meth. Neurochem. 2: 2–52.Google Scholar
  43. 43.
    Wieloch, T. and Siesjo, B.K. (1982): Path. Biol. 30: 269–277.Google Scholar
  44. 44.
    Wykle, R.L. and Schremmer, J.M. (1974): J. Biol. Chem. 249: 1742–1746.Google Scholar
  45. 45.
    Yamamura, H.I. and Snyder, S.H. (1973): J. Neurochem. 21: 1355.CrossRefGoogle Scholar
  46. 46.
    Zahler, P. and Kramer, R. (1981): Meth. Enzym. 71: 690–698.CrossRefGoogle Scholar
  47. 47.
    Zeisel, S.H. (1981): Ann. Rev. Nutr. 1: 95–121.CrossRefGoogle Scholar
  48. 48.
    Zeisel, S.H., Growdon, J.H., Wurtman, R.J., Magil, S.M. and Logue, M. (1980): Neurology 30: 1226–1229.CrossRefGoogle Scholar
  49. 49.
    Zeisel, S.H., Story, D.L., Wurtman, R.J. and Brunengraber, H. (1980): Proc. Natl. Acad. Sci., U.S.A., 77: 4417–4419.CrossRefGoogle Scholar
  50. 50.
    Zeisel, S.H., Wishnok, J.H. and Blusztajn, J.K. (1983): J. Pharmacol. Exptl. Therap. 225: 320–324.Google Scholar
  51. 51.
    Sheard, N.F. and Zeisel, S.H.: Am. J. Physiol. (submitted).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. H. Zeisel
    • 1
  1. 1.Departments of Pathology and PediatricsBoston University School of MedicineBostonUSA

Personalised recommendations