Immunocytochemical Evidence for the Intra-Axonal Transport of nAChR-Like Material in Motor Neurons

  • A. B. Dahlström
  • S. Bööj
  • A.-G. Dahllöf
  • J. Häggblad
  • E. Heilbronn
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


The nicotinic acetylcholine receptor (nAChR) at the motor endplate of mammals, and in the electric organ of e.g. Torpedo, is an integral membrane protein (5). In the normal mammalian motor endplate nAChR is present in the postsynaptic membrane, i.e., in the sarcolemma of the innervated skeletal muscle. Upon denervation the amount of nAChR increases and the receptors will eventually spread over the whole surface of the muscle cell (3, 23). This indicates that the muscle cell is capable of manufacturing its own nAChR protein.


Sciatic Nerve Axonal Transport Ventral Horn Electric Organ Ventral Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizenman, E., Millington, W.R., Zarbin, M.A., Bierkamper, G.G. and Kuhar, M.J. (1983): Fed. Proc. 42:1147.Google Scholar
  2. 2.
    Aizenman, E., Millington, W.R., Zarbin, M.A., Bierkamper, G.G. and Kuhar, M.J. (1984): This book.Google Scholar
  3. 3.
    Axelsson, J. and Thesleff, S. (1959): J. Physiol. (Lond.) 149: 178–193.Google Scholar
  4. 4.
    Bender, A.N., Ringel, S.P. and Engel, W.K. (1976): Neurology 26:477–483.CrossRefGoogle Scholar
  5. 5.
    Briley, M.S. and Changeux, J.-P. (1977): Int. Rev. Neurobiol. 20:31–63.CrossRefGoogle Scholar
  6. 6.
    Dahlstrüm, A. (1983): In Molecular Aspects of Neurological Disorders (ed.) L. Austin, Academic Press Australia, pp. 139–146.Google Scholar
  7. 7.
    Dahlstram, A. (1983): In Handbook of Neurochemistry,Vol. 5 (ed.) A. Lajtha, Plenum Press, New York, pp. 405–441.Google Scholar
  8. 8.
    Daniels, M.P. and Vogel, Z. (1975): Nature (Lond.) 253:339–341.CrossRefGoogle Scholar
  9. 9.
    Gruber, H. and Zenker, W. (1973): Brain Res. 51:207–214.CrossRefGoogle Scholar
  10. 10.
    Hffggblad, J. and Heilbronn, E. (1983): Br. J. Pharmacol. 80: 471–476.Google Scholar
  11. 11.
    Häggblad, J. and Heilbronn, E. (1984): This book.Google Scholar
  12. 12.
    Hamprecht, B., Kemper, W. and Amano, T. (1976): Brain Res. 101:129–135.CrossRefGoogle Scholar
  13. 13.
    Heilbronn, E. and Mattsson, E. (1974): J. Neurochem. 22:315–317.CrossRefGoogle Scholar
  14. 14.
    Hohlfeld, R., Sterz, R. and Peper, K. (1981): Pflitgers Arch. 391:213–218.CrossRefGoogle Scholar
  15. 15.
    Ito, Y., Miledi, R., Molenaar, P.C., Vincent, A., Polak, R.L., van Gelder, M. and Newsom-Davis, J. (1976): Proc. R. Soc. Lond. 192:475–480.CrossRefGoogle Scholar
  16. 16.
    Jones, S.W. and Salpeter, M.M. (1983): J. Neurosci. 3:326–331.Google Scholar
  17. 17.
    Koelle, G.B. (1955): J. Pharm. Exp. Therap. 114:167–184.Google Scholar
  18. 18.
    Laduron, P. (1980): Nature (Lond.) 286:287–288.CrossRefGoogle Scholar
  19. 19.
    Lentz, T.L. and Chester, J. (1982): Neurosci. 7:9–20.CrossRefGoogle Scholar
  20. 20.
    Lentz, T.L., Mazurkiewicz, J.E. and Rosenthal, J. (1977): Brain Res. 132:423–442.CrossRefGoogle Scholar
  21. 21.
    Levin, B.E. (1982): Science 217:555–557.CrossRefGoogle Scholar
  22. 22.
    Miledi, R., Molenaar, P.C. and Polak, R.L. (1978): Nature (Loud.) 272:641–643.CrossRefGoogle Scholar
  23. 23.
    Miledi, R. and Potter, L.T. (1971): Nature (Lond.) 233:599–603.CrossRefGoogle Scholar
  24. 24.
    Miyamoto, M.D. (1978): Pharmacol. Reviews 29:221–247.Google Scholar
  25. 25.
    Mochly-Rosen, D. and Fuchs, S. (1981): Biochemistry 20:5920–5924.CrossRefGoogle Scholar
  26. 26.
    Molenaar, P.C. and Polak, R.L. (1980): Progr. Pharmacol. 3/4: 39–44.Google Scholar
  27. 27.
    Molenaar, P.C., Polak, R.L., Miledi, R., Alema, S., Vincent, A. and Newsom-Davis, J. (1979): Progr. Brain Res. 49:449–458.CrossRefGoogle Scholar
  28. 28.
    Nachmansohn, D. (1959): In Chemical and Molecular Basis of Nerve Activity Academic Press, New York.Google Scholar
  29. 29.
    Ninkovic, M. and Hunt, S. (1983): Brain Res. 272:57–69.CrossRefGoogle Scholar
  30. 30.
    Souroujon, M.C., Mochly-Rosen, D., Gordon, A.S. and Fuchs, S. (1983): Muscle Nerve 6:303–311.CrossRefGoogle Scholar
  31. 31.
    Wamsley, J.K. (1983): Eur. J. Pharmacol. 86:309–310.CrossRefGoogle Scholar
  32. 32.
    Wamsley, J.K., Zarbin, M.A. and Kuhar, M.J. (1981): Brain Res. 217:155–162.CrossRefGoogle Scholar
  33. 33.
    Webb, S.N. and Bowman, W.C. (1974): Clin. Exp. Pharmacol. Physiol. 1:123–134.CrossRefGoogle Scholar
  34. 34.
    Villegas, J. (1978): TINS, pp. 66–68.Google Scholar
  35. 35.
    Zarbin, M.A., Wamsley, J.K. and Kuhar, M.J. (1982): J. Neurosci. 2:934–941.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. B. Dahlström
    • 1
  • S. Bööj
    • 1
  • A.-G. Dahllöf
    • 1
  • J. Häggblad
    • 2
  • E. Heilbronn
    • 2
  1. 1.Institute of NeurobiologyUniversity of GöteborgSweden
  2. 2.Unit of Neurochemistry and NeurotoxicologyUniversity of StockholmSweden

Personalised recommendations