An Endogenous Neurotrophic Factor for the Maintenance of Acetylcholinesterase and Butyrylcholinesterase in the Preganglionically Denervated Superior Cervical Ganglion of the Cat

  • G. B. Koelle
  • G. A. Ruch
  • E. Uchida
  • R. Davis
  • W. A. Koelle
  • K. K. Rickard
  • U. J. Sanville
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


Most studies of neurotrophic activity have been conducted in vitro with tissue culture preparations (e.g., 22). The preganglionically denervated superior cervical ganglion (SCG) of the cat has been found to provide an excellent test-object for demonstrating this type of activity in vivo. It was shown many years ago by Sawyer and Hollinshead (23) that within three days of preganglionic denervation the AChE content of the cat SCG falls to < 20% of its control value, and the BuChE to < 70%; these effects persist for several weeks. When these changes were studied by light microscopic histochemistry it was found that preganglionic denervation results in the total disappearance of AChE from the neuropil; it remains in high concentration in the perikarya of occasional (< 1%, 9) neurons, and in low concentration in the remainder. Butyrylcholinesterase, which is found normally only in the neuropil, shows a moderate fall (10, 15; Fig. 1 in ref. 11). From these and related findings it was concluded that most of the AChE of the normal cat SCG is confined to the preganglionic axons and their terminals, and that BuChE is present only in the capsular glial or Schwann sheath cells.


Nerve Growth Factor Neurotrophic Factor External Carotid Superior Cervical Ganglion Lingual Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barde, Y.A., Edgar, D. and Thoenen, H. (1980): Proc. Natl. Acad. Sci. USA 77: 1199–1203.Google Scholar
  2. 2.
    Bon, S., Vigny, M. andMassoulie, J. (1979): Proc. Natl. Acad.¬Sci. USA 76: 2546–2550.Google Scholar
  3. 3.
    Chungcharoen, D., Daly, M. de B., and Schweitzer, A. (1952): J. Physiol. ( London ) 118: 528–536.Google Scholar
  4. 4.
    Davis, R. and Koelle, G.G. (1978): J. Cell Biol. 78: 785–809.CrossRefGoogle Scholar
  5. 5.
    Davis, R. and Koelle, G.B. (1981): J. Cell Biol. 88: 581–590.CrossRefGoogle Scholar
  6. 6.
    Ellman, G.L., Courtney, K.D., Andres, V., Jr. and Featherstone, R.M. (1961): Biochem. Pharmacol. 7: 88–95.CrossRefGoogle Scholar
  7. 7.
    Gisiger, V., Vigny, M., Gautron, J. and Rieger, F. (1978): J. Neurochem. 30: 501–516.CrossRefGoogle Scholar
  8. 8.
    Hall, Z.W. (1973): J. Neurobiol. 4: 343–361.CrossRefGoogle Scholar
  9. 9.
    Holmstedt, B. and Sjgvist, F. (1959): Acta Physiol. Scand. 47: 284–296.CrossRefGoogle Scholar
  10. 10.
    Koelle, G.B. (1951): J. Pharmacol. Exp. Ther. 103: 153–171.Google Scholar
  11. 11.
    Koelle, G.B., Davis, R., Koelle, W.A., Ruch, G.A., Rickard, K.K. and Sanville, U.J. (1981): In: Cholinergic Mechanisms (eds) G. Pepeu and H. Ladinsky, Plenum Press, New York, pp. 127–132.Google Scholar
  12. 12.
    Koelle, G.B., Davis, R., Smyrl, E.G. and Fine, A.V. (1974): J. Histochem. Cytochem. 22: 252–259.Google Scholar
  13. 13.
    Koelle, G.B. and Ruch, G.A. (1983): Proc. Natl. Acad. Sci. USA 80: 3106–3110.Google Scholar
  14. 14.
    Koelle, G.B., Ruch, G.A. and Uchida, E. (1983): Proc. Natl. Acad. Sci. USA 80: 6122–6125.Google Scholar
  15. 15.
    Koelle, W.A. and Koelle, G.B. (1959): J. Pharmacol. Exp. Ther. 126: 1–8.Google Scholar
  16. 16.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951): J. Biol. Chem. 193: 265–275.Google Scholar
  17. 17.
    Lubinska, L. (1982): Brain Res. 223: 227–240.CrossRefGoogle Scholar
  18. 18.
    Marshall, L.F., Smith, R.W., and Shapiro, H.M. (1979): J. Neurosurg. 50: 26–30.CrossRefGoogle Scholar
  19. 19.
    Massoulie, J. and Bon,S. (1982): Ann. Rev. Neurosci. 5: 57–106.Google Scholar
  20. 20.
    Michenfelder, J.D. and Theye, R.A. (1973): Anesthesiology 39: 510–517.CrossRefGoogle Scholar
  21. 21.
    Nilsson, L. (1971): Acta Neurol. Scand. 47: 233–253.CrossRefGoogle Scholar
  22. 22.
    Perez-Polo, J.R. and de Vellis, J. (eds) (1982): Special Issue on Growth and Trophic Factors. J. Neuroscience Research 8: 127–567.Google Scholar
  23. 23.
    Sawyer, C.H. and Hollinshead, W.H. (1945): J. Neurophysiol. 8: 137–153.Google Scholar
  24. 24.
    Schwartz, M.J., Ghetti, B., Truex, L. and Schmidt, M.J. (1982): J. Neurosci. Res. 8: 205–211.Google Scholar
  25. 25.
    Shine, H.D. and Perez-Polo, J.R. (1976): J. Neurochem. 27: 1315–1318.CrossRefGoogle Scholar
  26. 26.
    Uchida, E. and Koelle, G.B. (1983): Proc. Natl. Acad. Sci. 80: 6723–6727.Google Scholar
  27. 27.
    Verdiere, M., Derer, M. and Rieger, F. (1982): Developmental Biol. 89: 509–515.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • G. B. Koelle
    • 1
  • G. A. Ruch
    • 1
  • E. Uchida
    • 1
  • R. Davis
    • 1
  • W. A. Koelle
    • 1
  • K. K. Rickard
    • 1
  • U. J. Sanville
    • 1
  1. 1.Department of Pharmacology Medical School/G3University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations