Advertisement

Molecular Relationship between Acetylcholinesterase and Acetylcholine Receptors

  • P. Fossier
  • G. Baux
  • L. Tauc
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

Application of acetylcholinesterase inhibitors (AChEIs; organophosphates, carbamates or quaternary ammonium compounds) at the neuromuscular junction leads to an increase in the amplitude and duration of the end-plate potential (1, 16). This effect has been considered to be a consequence of acetylcholinesterase (AChE) inhibition and of the resulting increase in concentration of acetylcholine (ACh) in the synaptic cleft (11, 12, 16). At vertebrate ganglionic cholinergic synapses (3), however, the postsynaptic response is not modified when AChE is blocked, indicating that this enzyme might not play a major role in the inactivation of released ACh. It appears that the main reason for this difference might lie in the different geometry of the endplate compared to that of a neuro-neuronal synapse: ACh can accumulate within the cleft of the neuromuscular junction, whereas at a neuro-neuronal synapse it diffuses rapidly into the intercellular space.

Keywords

Acetylcholine Receptor Membrane Fluidity AChE Inhibitor Quaternary Ammonium Compound Abdominal Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bois, R.T. Hummel, R.G., Dettbarn, W-D. and Laskowski, M.B. (1980): J. Pharmacol. Exp. Ther. 215:53–59.Google Scholar
  2. 2.
    Dettbarn, W-D. and Rosenberg, P. (1962): Biochim. Biophys. Acta. 65:362–363.CrossRefGoogle Scholar
  3. 3.
    Emmelin, B. and MacIntosh, F.C. (1956): J. Physiol. (Lond.) 131:477–496.Google Scholar
  4. 4.
    Fossier, P., Baux, G. and Tauc, L. (1983): Pflugers Arch. 396:15–22.CrossRefGoogle Scholar
  5. 5.
    Fossier, P., Baux, G. and Tauc, L. (1983): Nature 301:710–712.CrossRefGoogle Scholar
  6. 6.
    Gardner, D. (1971): Science 173:550–553.CrossRefGoogle Scholar
  7. 7.
    Gardner, D. and Kandel, E.r. (1977): J. Neurophysiol. 40: 333–348.Google Scholar
  8. 8.
    Gardner, D. and Stevens, C.F. (1980): J. Physiol. (Lond.) 304: 145–164.Google Scholar
  9. 9.
    Gerschenfeld, H.M., Ascher, P. and Tauc, L. (1967): Nature 213:358–359.CrossRefGoogle Scholar
  10. 10.
    Klymkowski, M.W., Heuser, J.E. and Stroud, R.M. (1980): J. Cell Biol.: 85: 823–838.CrossRefGoogle Scholar
  11. 11.
    Laskowski, M.B. and Dettbarn, W-D. (1979): J. Pharmacol. Exp. Ther. 210:269–274.Google Scholar
  12. 12.
    Morrison, J.D. (1977): Br. J. Pharmacol. 60:45–53.Google Scholar
  13. 13.
    Neubig, R.R., Krodel, E.K., Boyd, N.D. and Cohen, J.B. (1979): Proc. Natl. Acad. Sci. USA 76:690–694.CrossRefGoogle Scholar
  14. 14.
    Simonneau, M., Tauc, L. and Baux, G. (1980): Proc. Natl. Acad. Sci. USA 77:1661–1665.CrossRefGoogle Scholar
  15. 15.
    Simonneau, M., Baux, G. and Tauc, L. (1980): In: Ontogenesis and Functional Mechanisms of Peripheral Synapse. INSERM Symposium #13, Editor J. Taxi, Elsevier/North Holland Biomedical Press, pp. 179–189.Google Scholar
  16. 16.
    Skliarov, A.I. (1980): Gen. Pharmac. 11:89–95.CrossRefGoogle Scholar
  17. 17.
    Stinnakre, J. (1970): J. Physiol. (Paris) 62 suppl. 3:452–453.Google Scholar
  18. 18.
    Tauc, L. and Gerschenfeld, H.M. (1962): J. Neurophysiol. 25: 236–262.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. Fossier
  • G. Baux
  • L. Tauc
    • 1
  1. 1.Laboratoire de Neurobiologie CellulaireC.N.R.S.Gif sur YvetteFrance

Personalised recommendations