Control of the Release of [3H]-Acetylcholine from Rat Hippocampal Slices by Aminopyridines and Phencyclidine

  • R. D. Schwarz
  • C. J. Spencer
  • A. A. Bernabei
  • T. A. Pugsley
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


Release of acetylcholine (ACh) resulting from the depolarization of cholinergic nerve terminals appears to involve the movement of specific ions across the nerve membrane. Experimentally, electrical stimulation and veratridine release ACh by increasing the flux of Na+ as shown by their sensitivity to the Na+ channel blocker tetrodotoxin (TTX), while elevated K+ releases ACh by a TTX insensitive mechanism. In addition, all three methods appear to require the presence of extracellular Ca++ in order to release ACh from vesicular stores (3, 9, 11). Electrophysiological data have suggested that blockade of K+ channels will also enhance neurotransmitter release by increasing Ca++ entry or utilization, due to the prolongation of the repolarization period (14).


Spontaneous Release Cholinergic Function Nerve Membrane Vesicular Store Cholinergic Nerve Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albuquerque, E.X., Aguayo, L.G., Warnick, J.E., Weinstein, H., Glick, S.D., Maayani, S., Ickowics, R.K., and Blaustein, M.P. (1981): Proc. Natl. Acad. Sci. 12: 7792–7796.Google Scholar
  2. 2.
    Albuquerque, E.X., Aguaya, L.G., Warnick, J.E., Ickowicz, R.K. and Blaustein, M.P. (1983): Fed. Proc. 42: 2584–2589.Google Scholar
  3. 3.
    Blaustein, M.P. (1975): J. Physiol. 247: 617–655.Google Scholar
  4. 4.
    Blaustein, M.P. and Ickowicz, R.K. (1983): Proc. Natl. Acad. Sci.: 80: 3855–3859.Google Scholar
  5. 5.
    Bowman, W.C. (1982): Trends Pharmacol. Sci. 3: 183–185.Google Scholar
  6. 6.
    Dolezal. V. and Tucek, S. (1983): Arch. Pharm. 323: 90–95.CrossRefGoogle Scholar
  7. 7.
    Lundh, H. and Thesleff, S. (1977): Eur. J. Pharm. 42: 411–412.CrossRefGoogle Scholar
  8. 8.
    Meves, H. and Pichon, Y. (1977): J. Physiol. ( Lond ) 268: 511–532.Google Scholar
  9. 9.
    Minchin, M.C. (1980): J. Neurosci. Methods 2: 111–121.Google Scholar
  10. 10.
    Murray, T.F. and Cheney, D.L. (1981): J. Pharm. Exp. Ther. 733–737.Google Scholar
  11. 11.
    Paton, D.M. (1979) In: The Release of Catecholamines From Adrenergic Neurons Pergamon Press, NY, 323–332.Google Scholar
  12. 12.
    Peterson, C. and Gibson,G.E. (1983): Neurobiol. Aging 4: 25–30.CrossRefGoogle Scholar
  13. 13.
    Schwarz, R.D., Spencer, C.J., Bernabei, A.A. and Pugsley, T.A. (1983): Soc. Neurosci. Abstracts 9: 433.Google Scholar
  14. 14.
    Siegelbaum, S.A. and Tsien, R.W. (1983): Trends in Neurosci. 6: 307–320.CrossRefGoogle Scholar
  15. 15.
    Tapia, R. and Sitges, M. (1982): Brain Res. 250: 291–299.CrossRefGoogle Scholar
  16. 16.
    Thesleff, S. (1980): Neurosci. 5: 1413–1419.CrossRefGoogle Scholar
  17. 17.
    Vickroy, T.W. and Johnson, K.M. (1983): Neuropharm. 22: 839–842.CrossRefGoogle Scholar
  18. 18.
    Yeh, J.Z., Oxford, G.S., Wu, C.H. and Narahashi, T. (1976): J. Gen. Physiol. 68: 519–535.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. D. Schwarz
    • 1
  • C. J. Spencer
    • 1
  • A. A. Bernabei
    • 1
  • T. A. Pugsley
    • 1
  1. 1.Warner-Lambert/Parke-Davis Pharmaceutical ResearchAnn ArborUSA

Personalised recommendations