Advertisement

Long Term Potentiation of Cholinergic Transmission in the Sympathetic Ganglion

  • C. A. Briggs
  • D. A. McAfee
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

Long term potentiation (LTP), like the better known posttetanic potentiation (PTP), is a use-dependent increase in synaptic efficacy. Both potentiations are induced after repetitive synaptic stimulation for a few seconds. But while posttetanic potentiation decays away in a few minutes after the tetanic stimulation, long term potentiation continues for hours or even longer (7, 14, 27). The striking disparity between the endurance of long term potentiation and the brevity of its induction suggests a metabolic modulation of synaptic transmission.

Keywords

Long Term Potentiation Sympathetic Ganglion Compound Action Potential Tetanic Stimulation Synaptic Efficacy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersen, P., Sundberg, S.H., Sveen,0., Swann, J.W. and Wigstrom, H. (1980): J. Physiol (London) 302:463–482.Google Scholar
  2. 2.
    Ashe, J..W. and Libet, B. (1981): Brain Res. 217:93–106.CrossRefGoogle Scholar
  3. 3.
    Barrionuevo, G. and Brown, T.H. (1983): Proc. Natl. Acad. Sci.USA 80:7347–7351.CrossRefGoogle Scholar
  4. 4.
    Baudry, M., Siman, R., Smith, E.K. and Lynch, G. (1983): Eur. J. Pharmacol. 90:161–168.CrossRefGoogle Scholar
  5. 5.
    Baxter, D.A., Bittner, G.D. and Brown, T.H. (1985): Proc. Natl. Acad. Sci. USA in press.Google Scholar
  6. 6.
    Birks, R.I. (1978): J. Physiol. (London) 280:559–572.Google Scholar
  7. 7.
    Bliss, T.V.P. (1979): Trends in Neurosciences 2:42–45.CrossRefGoogle Scholar
  8. 8.
    Bliss, T.V.P. and Gardner-Medwin, A.R. (1973): J. Physiol. (London) 232:357–374.Google Scholar
  9. 9.
    Bliss, T.V.P. and Lomo, T. (1973): J. Physiol. (London) 232: 331–356.Google Scholar
  10. 10.
    Briggs, C.A., Brown, T.H. and McAfee, D.A. (1983): Trans. Am. Soc. Neurochem. 14:141.Google Scholar
  11. 11.
    Briggs, C.A., Brown, T.H. and McAfee, D.A. (1985): J. Physiol (London) 359:503–521.Google Scholar
  12. 12.
    Brown, D.A., Constanti, A. and Adams, P.R. (1981): Fed. Proc. 40:2625–2636.Google Scholar
  13. 13.
    Brown, T.H. and McAfee, D.A. (1982): Science 215:1411–1413.CrossRefGoogle Scholar
  14. 14.
    Chung, S.H. (1977): Nature 266:677–678.CrossRefGoogle Scholar
  15. 15.
    Collier, B., Kwok, Y.N. and Weiner, S.A. (1983): J. Neurochem. 40:91–98.CrossRefGoogle Scholar
  16. 16.
    Dolphin, A.C., Errington, M.L. and Bliss, T.V.P. (1982): Nature 297:496–498.CrossRefGoogle Scholar
  17. 17.
    Dunant, Y. (1969): Prog. Brain Res. 31:131–139.CrossRefGoogle Scholar
  18. 18.
    Dunant, Y. and Dolivo, M. (1968): Brain Res. 10:271–273.CrossRefGoogle Scholar
  19. 19.
    Dunwiddie, T., Madison, D. and Lynch, G. (1978): BrainRes. 150:413–417.Google Scholar
  20. 20.
    Gerren, R.A. and Weinberger, N.M. (1983): BrainRes. 265:138–142.Google Scholar
  21. 21.
    Kumamoto, E. and Kuba, K. (1983): Nature 305:145–146.CrossRefGoogle Scholar
  22. 22.
    Larrabee, M.G. and Bronk, D.W. (1947): J. Neurophysiol. 10: 139–154.Google Scholar
  23. 23.
    Lee, K.S. (1982): Brain Res. 239:617–623.CrossRefGoogle Scholar
  24. 24.
    Lewis, D., Teyler, T. and Shashoua, V. (1981): Soc. Neurosci. Abs. 7:66.Google Scholar
  25. 25.
    Libet, B. (1975): Nature 258:155.CrossRefGoogle Scholar
  26. 26.
    Lomo, T. (1966): Acta Physiol. Scand. Suppl. 277:128.Google Scholar
  27. 27.
    Lynch, G., Browning, M. and Bennett, W.F. (1979): Fed. Proc. 38:2117–2122.Google Scholar
  28. 28.
    McAfee, D.A. and Brown, T.H. (1981): Soc. Neurosci. Abs. 7:710.Google Scholar
  29. 29.
    McAfee, D.A. andYarowsky, P. (1979): J. Physiol. (London)245:447–466.Google Scholar
  30. 30.
    McCaman, R.E., Briggs, C.A. and McAfee, D.A. (1984): Soc. Neurosci. Abs. 10:195.Google Scholar
  31. 31.
    Mclsaac, R.J. (1977): J. Pharmac. Exp. Ther. 200:107–116.Google Scholar
  32. 32.
    Racine, R.J., Milgram, N.W. and Hafner, S. (1983): Brain Res. 260:217–231.CrossRefGoogle Scholar
  33. 33.
    Schwartzkroin, P.A. and Wester, K. (1975): Brain Res. 89:107–119.CrossRefGoogle Scholar
  34. 34.
    Skrede, K.K. and Malthe-Sorenssen, D. (1981): Brain Res. 208:436–441.CrossRefGoogle Scholar
  35. 35.
    Turner, R.W., Baimbridge, K.G. and Miller, J.J. (1982): Neurosci. 7:1411–1416.CrossRefGoogle Scholar
  36. 36.
    Volle, R.L. (1966): Pharmac. Rev. 18:839–869.Google Scholar
  37. 37.
    Weight, F.F., Schulman, J.A., Smith, P.A. and Busis, N.A. (1979): Fed. Proc. 38:2084–2094.Google Scholar
  38. 38.
    Wigstrom, H., McNaughton, B.L. and Barnes, C.A. (1982): Brain Res. 233:195–199.CrossRefGoogle Scholar
  39. 39.
    Yamamoto, C. and Chujo, T. (1978): Exp. Neurol. 58:242–250.CrossRefGoogle Scholar
  40. 40.
    Zengel, J.E., Magleby, K.L., Horn, J.P., McAfee, D.A. and Yarowsky, P.J. (1980): J. Gen. Physiol. 76:213–231.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • C. A. Briggs
    • 1
  • D. A. McAfee
    • 1
  1. 1.Division of NeurosciencesBeckman Research Institute City of HopeDuarteUSA

Personalised recommendations