Muscarinic Receptor Activation Increases Efflux of Choline from Isolated Heart and Rat Cortex in Vivo. Interactions with Forskolin and IBMX

  • K. Löffelholz
  • R. Brehm
  • R. Lindmar
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


Muscarinic receptor activation modulates functions of the heart and neurotransmission in the peripheral and central nervous system. Moreover, muscarinic agonists produce changes in the metabolism of, for example, heart tissue, such as inhibition of beta-adrenoceptor-mediated cAMP accumulation, glycogenolysis and lipase activation.


Cholinesterase Inhibitor Phosphatidic Acid Positive Inotropic Effect Coronary Resistance Atrial Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Clark, R.B., Salmon, D.M. and Honeyman, T.W. (1980): J. Cyclic Nucl. Res. 6:37–41.Google Scholar
  2. 2.
    Corradetti, R., Lindmar, R. and Löffelholz, K. (1982): Europ. J. Pharmacol. 85:123–124.CrossRefGoogle Scholar
  3. 3.
    Corradetti, R., Lindmar, R. and Löffelholz, K. (1983): J. Pharmacol. Exp. Ther. 226:826–832.Google Scholar
  4. 4.
    DeVries, G.H., Chalifour, R.J. and Kanfer, J.N. (1983): J. Neurochem. 40:1189–1191.CrossRefGoogle Scholar
  5. 5.
    Dieterich, H.A. and Löffelholz, K. (1977): Naunyn-Schmiedeberg’s Arch. Pharmacol. 296:143–148.Google Scholar
  6. 6.
    Goldberg, A.M. and McCaman, R.E. (1974): In: Choline and Acetylcholine. Handbook of Chemical Assay Methods (ed) I. Hanin, Raven Press, New York, pp. 47–61.Google Scholar
  7. 7.
    Hirata, F. and Axelrod, J. (1980): Science 209:1082–1090.CrossRefGoogle Scholar
  8. 8.
    Isragl, M. and Lesbats, B. (1982): J. Neurochem. 39: 248–250.CrossRefGoogle Scholar
  9. 9.
    Korth, M. (1978): Naunyn-Schmiedeberg’s Arch. Pharmacol. 302:77–86.CrossRefGoogle Scholar
  10. 10.
    McNeill, J.H., Brenner, M.J. and Muschek, L.D. (1973): Recent Adv. Stud. Card. Struct. Metab. 3:261–273.Google Scholar
  11. 11.
    Michell, R.H. (1975): Biochim. Biophys. Acta 415:81–147.Google Scholar
  12. 12.
    Nemecek, G.M. and Honeyman, T.W. (1983): Fed. Proc. 42(4):5001.Google Scholar
  13. 13.
    Panagia, V., Michiel, D.F., Dhalla, K.S., Nijjar, M.S. and Dhalla, N.S. (1981): Biochim. Biophys. Acta 676:395–400.CrossRefGoogle Scholar
  14. 14.
    Pelech, S.L., Pritchard, P.H. and Vance, D.E. (1982): Biochim. Biophys. Acta 713:260–269.Google Scholar
  15. 15.
    Philipson, K.D., Frank, J.S. and Nishimoto, A.Y. (1983): J. Biol. Chem. 258:5905–5910.Google Scholar
  16. 16.
    Putney, J.W., Jr. (1983): In: Adrenoceptors and Catecholamine Action — Part B (ed) G. Kunos, John Wiley & Sons, Chichester, New York, pp. 51–64.Google Scholar
  17. 17.
    Seamon, K.B. and Daly, J.W. (1983): TIPS 4:120–123.Google Scholar
  18. 18.
    Stahl, W.L. (1973): Arch. Biochem. Biophys. 154:56–67.CrossRefGoogle Scholar
  19. 19.
    Zelinski, T.A., Savard, J.D., Man, R.Y.K. and Choy , P.C. (1980): J. Biol. Chem. 255:11423–11428.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • K. Löffelholz
    • 1
  • R. Brehm
    • 1
  • R. Lindmar
    • 1
  1. 1.Department of PharmacologyUniversity of MainzMainzFederal Republic of Germany

Personalised recommendations