Acetylcholine and Choline Contents of Rat Skeletal Muscle Determined by a Radioenzymatic Microassay: Effects of Drugs

  • S. Consolo
  • M. Romano
  • C. Scozzesi
  • A. C. Bonetti
  • H. Ladinsky
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


Skeletal muscle contains a small amount of acetylcholine (ACh) relegated primarily to the nerve terminals in the endplate region (10), and a large quantity of choline (3). The ratio of the concentrations of choline:ACh in muscle is at least two orders of magnitude greater than it is in brain. Due to these particular characteristics some of the recently devised radio-chemical and chemical methods are unsuitable for the determination of ACh in this tissue since they lack either sufficient sensitivity or the necessary capacity to separate quantitatively the ACh from the high choline. Gas chromatography-mass fragmentography methodology (5, 11) has the required sensitivity and separative capacity, and is currently used for muscle ACh assay. Mass fragmentography is, however, expensive and not available to everybody. Hence, the relative dearth of information on drug effects on muscle ACh content, although such studies are warranted to complement extensive knowledge on drugs affecting the neuromuscular junction, obtained by physiological and electrophysiological means.


Extensor Digitorum Longus Extensor Digitorum Longus Muscle Buffer Substrate Acetylation Reaction Choline Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Feigenson, M.E. and Saelens, J.K. (1969): Biochem. Pharma col. 18: 1479–1486.CrossRefGoogle Scholar
  2. 2.
    Goldberg, A.M. and McCaman, R.E. (1973): J. Neurochem. 20: 1–8.CrossRefGoogle Scholar
  3. 3.
    Gundersen, C.B., Jenden, D.J. and Newton, M.W. (1981): J. Physiol. ( Lond. ) 310: 13–35.Google Scholar
  4. 4.
    Hille, B. (1977): J. Gen. Physiol. 69: 497–515.Google Scholar
  5. 5.
    Jenden, D.J. and Hanin, I. (1974): In Choline and Acetylcholine: Handbook of Chemical Assay Methods (ed.) I. Hanin, Raven Press, New York, pp. 135–150.Google Scholar
  6. 6.
    Ladinsky, H. and Consolo, S. (1974): In Choline and Acetyl choline: Handbook of Chemical Assay Methods (ed.) I. Hanin, Raven Press, New York, pp. 1–17.Google Scholar
  7. 7.
    Ladinsky, H., Consolo, S., Bianchi, S. and Jori, A. (1976): Brain Res. 108: 351–361.CrossRefGoogle Scholar
  8. 8.
    Ladinsky, H., Consolo, S., and Sanvito, A. (1972): Anal. Bio-chem. 49: 294–297.Google Scholar
  9. 9.
    Miledi, R., Molenaar, P.C. and Polak, R.L. (1978): Nature 272: 641–643.CrossRefGoogle Scholar
  10. 10.
    Miledi, R., Molenaar, P.C., Polak, R.L., Tas, J.W.M. and Van der Laaken, T. (1982): Proc. R. Soc. Lond. B 214: 153–168.CrossRefGoogle Scholar
  11. 11.
    Polak, R.L. and Molenaar, P.C. (1979): J. Neurochem. 23: 12951297.Google Scholar
  12. 12.
    Polak, R.L., Sellin, L.C. and Thesleff, S. (1981): J. Physiol. 319: 253–259.Google Scholar
  13. 13.
    Potter, L.T., and Murphy, W. (1967): Biochem. Pharmacol. 16: 1386–1388.CrossRefGoogle Scholar
  14. 14.
    Saelens, J.K., Allen, M.P. and Simke, J.P. (1970): Arch. Int. Pharmacodyn. 186: 279–286.Google Scholar
  15. 15.
    Strickartz, G. (1976): Anaesthesiology 45: 421–441.CrossRefGoogle Scholar
  16. 16.
    Vyas, S. and Marchbanks, R.M. (1983): Biochem. Pharmacol. 32: 2827–2829.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. Consolo
    • 1
  • M. Romano
    • 1
  • C. Scozzesi
    • 1
  • A. C. Bonetti
    • 1
    • 2
  • H. Ladinsky
    • 1
  1. 1.Mario Negri Institute for Pharmacological ResearchMilanItaly
  2. 2.Fidia Research LaboratoriesAbano TermeItaly

Personalised recommendations