Advertisement

Effects of Exogenous Choline on Acetylcholine and Choline Contents and Release in Striatal Slices

  • J.-C. Maire
  • J. K. Blusztajn
  • R. J. Wurtman
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

The synthesis of acetylcholine (ACh) requires choline as the immediate precursor. The free extracellular choline can enter cholinergic neurons through a high affinity and a low affinity transport system (10, 26). ACh content of various tissues has been reported to increase after administration of choline (4, 7, 11, 13, 19), although this effect was not always observed in animal brain in other studies (8, 14, 18, 22). In spite of these discrepancies, results often support the hypothesis that the level of exogenous choline regulate ACh synthesis during periods of increased neuronal demand for the precursor or when choline supply to the neurons is reduced (16, 21, 23).

Keywords

Stimulation Period Choline Uptake Choline Level Free Choline Choline Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blusztajn, J.K. and Wurtman, R.J. (1981): Nature, 290: 417–418.CrossRefGoogle Scholar
  2. 2.
    Blusztajn, J.K. and Wurtman, R.J. (1983): Science, 221: 614–620.CrossRefGoogle Scholar
  3. 3.
    Blusztajn, J.K., Zeisel, S.H. and Wurtman, R.J. (1979): Brain Res., 179:,319–327.CrossRefGoogle Scholar
  4. 4.
    Cohen, E.L. and Wurtman, R.J. (1976): Science, 191: 561–562.CrossRefGoogle Scholar
  5. 5.
    Crews, F.T., Hirata, F. and Axelrod, J. (1980): J. Neurochem. 34: 1491–1498.CrossRefGoogle Scholar
  6. 6.
    Dross, K. and Kewitz, H. (1972): Naunyn- Schmiedeberg’s Arch. Pharmakol., 274: 91–106.Google Scholar
  7. 7.
    Eckernds, S.I., Sahlstrm, L. and Aquilonius, S-M. (1977): Acta Physiol. Scand., 101: 404–410.CrossRefGoogle Scholar
  8. 8.
    Flentge, F. and Van den Berg, C.J. (1979): J. Neurochem., 32: 1331–1333.CrossRefGoogle Scholar
  9. 9.
    Goldberg, A.M. andMcCaman, R.E. (1973): J. Neurochem., 20: 1–8.CrossRefGoogle Scholar
  10. 10.
    Haga, T. and Noda, H. (1973): Biochem. Biophys. Acta, 291: 564–575.Google Scholar
  11. 11.
    Haubrich, D.R., Wedeking, P.W. and Wang, P.F.L. (1974): Life Sci., 14: 921–927.CrossRefGoogle Scholar
  12. 12.
    Jenden, D.J., Weiler, M.H. and Gunderson, C.B. (1982): In: Alzheimer’s Disease: A Report of Progress (eds) Corkin, S., Davis, K.L., Growdon, J.H. and Wurtman, R.J., Raven Press, New York, pp. 315–326.Google Scholar
  13. 13.
    KuntscherovA, J. (1972): Physiol. Bohemoslov., 21: 655–660.Google Scholar
  14. 14.
    London, E.D. and Coyle, J.T. (1978): Biochem. Pharmacol., 27: 2962–2965.CrossRefGoogle Scholar
  15. 15.
    Lowry, 0.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951): J. Biol. Chem., 193: 265–275.Google Scholar
  16. 16.
    Millington, W.R. and Goldberg, A.M. (1982): Brain Res., 243: 263–270.CrossRefGoogle Scholar
  17. 17.
    O’Regan, S. and Collier, B. (1981): J. Neurochem., 36: 420–430.CrossRefGoogle Scholar
  18. 18.
    Pedata, F., Wieraszko, A. and Pepeu, G. (1977): Pharmacol. Res. Commun., 9: 755–761.Google Scholar
  19. 19.
    Racagni, G., Trabucchi, M. and Cheney, D.L. (1975): NaunynSchmiedeberg’s Arch. Pharmacol., 290: 99–105.Google Scholar
  20. 20.
    Stavinoha, W.B. and Weintraub, S.T. (1974): Science, 183: 964–965.CrossRefGoogle Scholar
  21. 21.
    Trommer, B.A., Schmidt, D.E. and Wecker, L. (1982): J. Neurochem., 39: 1704–1709.CrossRefGoogle Scholar
  22. 22.
    Wecker, L., Dettbarn, W.D. and Schmidt, D.E. (1978): Science, 199: 86–87.CrossRefGoogle Scholar
  23. 23.
    Wecker, L. and Goldberg, A.M. (1981): In: Cholinergic Mechanism: Phylogenetic Aspect. Central and Peripheral Synapses. and Clinical Significance (eds) Pepeu, G. and Ladinsky, H., Plenum Press, New York, pp. 451–461.Google Scholar
  24. 24.
    Weiler, M.H., Bak, I.J. and Jenden, D.J. (1983): J. Neurochem., 41: 473–480.CrossRefGoogle Scholar
  25. 25.
    Wurtman, R.J. and Zeisel, S.H. (1982): In: Alzheimer’s Disease: A Report of Progress (eds) Corkin, S., Davis, K.L., Growdon, J.H. and Wurtman, R.J., Raven Press, New York, pp. 303–313.Google Scholar
  26. 26.
    Yamamura, H.I. and Snyder, S. (1973): J. Neurochem., 21: 1355–1374.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J.-C. Maire
    • 2
  • J. K. Blusztajn
    • 1
  • R. J. Wurtman
    • 1
  1. 1.Department of Nutrition and Food ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Departement of PharmacologyCentre Médical UniversitaireGenevaSwitzerland

Personalised recommendations