Advertisement

A Reconstituted Presynaptic Membrane Equipped with Protein Structures Which Permit the Calcium Dependent Release of Acetylcholine

  • M. Israël
  • N. Morel
  • R. Manaranche
  • B. Lesbats
  • T. Gulik-Krzywicki
  • J. C. Dedieu
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

Presently most authors accept the view that there is, in the nerve terminal, a genuine cytosolic free acetylcholine (ACh) compartment (20 to 50% of the total ACh; 8, 31) and that the enzyme choline acetylase, which synthesizes it, is also located in the cytosol (5). Free ACh decreases and is renewed in the course of stimulation of electric organ slices (1, 2, 3, 7, 8). Starting with the whole tissue it was shown that the characteristic decay curve of the electrical discharge of a stimulated electric organ slice was associated with a characteristic variation of the free ACh compartment (1, 7, 8). The correlation was followed down to a few stimuli (3).

Keywords

Calcium Ionophore Acetylcholine Release Presynaptic Membrane Synaptosomal Membrane Choline Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunant, Y., Gautron, J., Israel, M., Lesbats, B. and Manaranche, R. (1974): J. Neurochem. 23: 635–643.CrossRefGoogle Scholar
  2. 2.
    Dunant, Y., Gautron, J., Israel, M., Lesbats, B. and Manaranche, R. (1972): J. Neurochem. 19: 1987–2202.CrossRefGoogle Scholar
  3. 3.
    Dunant, Y., Jones, G.J. and Loctin, F. (1982): J. Physiol. (London) 325: 441–460.Google Scholar
  4. 4.
    Fesce, R., Grohovaz, F., Hurlbut, W.P. and Ceccarelli, B. (1980): J. Cell. Biol. 85: 337–345.CrossRefGoogle Scholar
  5. 5.
    Fonnum, F. (1968): Biochem. J. 101: 389–398.Google Scholar
  6. 6.
    Gulik-Krzywicki,T. and Costello,M.J. (1978): J. Microsc. 112: 103–113.CrossRefGoogle Scholar
  7. 7.
    Israel, M. and Dunant, Y. (1979): In Progress in Brain Research (ed) S. Tucek, Elsevier, vol. 49, pp. 125–139.Google Scholar
  8. 8.
    Israel, M., Dunant, Y. and Manaranche, R. (1979): Prog. Neurobiol. 13: 237–275.CrossRefGoogle Scholar
  9. 9.
    Israel, M. and Lesbats, B. (1980): C.R. Acad. Sci. (Paris) 291: 713–716.Google Scholar
  10. 10.
    Israel, M. and Lesbats, B. (1981): Neurochem. Int. 3: 81–90.CrossRefGoogle Scholar
  11. 11.
    Israel, M. and Lesbats, B. (1981): J. Neurochem. 37: 1475–1483.CrossRefGoogle Scholar
  12. 12.
    Israel, M. and Lesbats, B. (1982): J. Neurochem. 39: 248–250.CrossRefGoogle Scholar
  13. 13.
    Israel, M., Lesbats, B. and Manaranche, R. (1981): Nature (London) 194: 474–475.CrossRefGoogle Scholar
  14. 14.
    Israel, M., Lesbats, B., Morel, N., Manaranche, R., GulikKrzywicki, T. and Dedieu, J.C. (1984): Proc. Nat. Acad. Sci. (USA) 81: 277–281.CrossRefGoogle Scholar
  15. 15.
    Israel, M., Manaranche, R., Lesbats, B. and Gulik-Krzywicki, T. (1981): J. Ultrastruct. Res. 75: 162–178.CrossRefGoogle Scholar
  16. 16.
    Israel, M., Lesbats, B., Manaranche, R., Morel, N., GulikKrzywicki, T. and Dedieu, J.C. (1982): J. Physiol. (Paris) 78:348–356. 19–20.Google Scholar
  17. 17.
    Israel, M., Lesbats, B., Manaranche, R. and Morel, N. (1983): Biochim. Biophys. Acta 728: 438–448.CrossRefGoogle Scholar
  18. 18.
    Israel, M., Manaranche, R., Lesbats, B. and Gulik-Krzywicki, T. (1982): In Advances in Biosciences (ed) P. Lechat, Pergamon Press, vol. 35, pp. 173–182.Google Scholar
  19. 19.
    Israel, M., Manaranche, R., Mastour-Frachon, P. and Morel, N. (1976): Biochem. J. 160: 113–115.Google Scholar
  20. 20.
    King, R.G. andMarchbanks, R.M. (1982): Biochem. J. 204: 565–576.Google Scholar
  21. 21.
    Laemmli, U.K. (1970): Nature (London) 227: 680–685.CrossRefGoogle Scholar
  22. 22.
    Manaranche, R., Thieffry, M. and Israel, M. (1980): J. Cell. Biol. 85: 446–458.CrossRefGoogle Scholar
  23. 23.
    Meyer, E.M. and Cooper, J.R. (1982): Science 217: 843–845.CrossRefGoogle Scholar
  24. 24.
    Meyer, E.M. and Cooper, J.R. (1983): Neuroscience 3: 987–994.Google Scholar
  25. 25.
    Morel, N., Israel, M., Manaranche, R. and Mastour-Frachon, P. (1977): J. Cell. Biol. 75: 43–45.CrossRefGoogle Scholar
  26. 26.
    Morel, N., Manaranche, R., Gulik-Krzywicki, T. and Israel, M. (1980): J. Ultrastruct. Res. 70: 347–362.CrossRefGoogle Scholar
  27. 27.
    Pumplin, D.W. and Reese, T.S. (1977): J. Physiol. (London) 273: 443–457.Google Scholar
  28. 28.
    Suszkiw, J.B. (1980): Neuroscience 5: 1341–1349.CrossRefGoogle Scholar
  29. 29.
    Takano, Y. and Hamiya, H. (1979); Experientia 35: 1076–1078.CrossRefGoogle Scholar
  30. 30.
    Tokunaga, A., Sandri, C. and Akert, K. (1979): Brain Res. 174: 207–219.CrossRefGoogle Scholar
  31. 31.
    Weiler, M., Roed, I.S. and Whittaker, V.P. (1982): J. Neurochem. 38: 1187–1191.CrossRefGoogle Scholar
  32. 32.
    Venzin, M., Sandri, C., Akert, K. and Wyss, U.R. (1977): Brain Res. 130: 393–404.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. Israël
    • 1
  • N. Morel
    • 1
  • R. Manaranche
    • 1
  • B. Lesbats
    • 1
  • T. Gulik-Krzywicki
    • 1
  • J. C. Dedieu
    • 1
  1. 1.Département de Neurochimie Laboratoire de Neurobiologie Cellulaire and Centre de Génétique MoléculaireC.N.R.S.Gif-sur-YvetteFrance

Personalised recommendations