Advertisement

Evoked Release of Acetylcholine at the Motor Endplate

  • R. Miledi
  • P. C. Molenaar
  • R. L. Polak
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

According to the hypothesis of vesicular release of acetylcholine (ACh) neuromuscular transmission is caused by the simultaneous exocytosis of a large number of synaptic vesicles from the nerve terminals upon the arrival of the action potential (2). At present there is general agreement that nerve stimulation causes a synchronized discharge of ACh packages (quanta), but whether these quanta derive from vesicles is still uncertain. In fact, this has been challenged by results from biochemical experiments, notably those on the electric organ of Torpedo (11, 27).

Keywords

Synaptic Vesicle Nerve Terminal Electric Organ Frog Muscle Motor Nerve Terminal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark, A.W., Hurlbut, W.P. and Mauro, A. (1972): J. Cell Biol. 52: 1–14.CrossRefGoogle Scholar
  2. 2.
    del Castillo, J. and Katz, B. (1957): In Microphysiologie comparée de éléments excitables, Colloques du Centre National de la Recherche Scientifique, Paris, Gif/Yvette, no. 67, pp. 245–258.Google Scholar
  3. 3.
    Dunant, Y., Gautron, J., Israel, M., Lesbats, B. and Manaranche, R. (1972): J. Neurochem. 19: 1987–2002.CrossRefGoogle Scholar
  4. 4.
    Dunant, Y., Israel, M., Lesbats, B. and Manaranche, R. (1977): Brain Res. 125: 123–140.CrossRefGoogle Scholar
  5. 5.
    Fletcher, P. and Forr ester, T. (1975): J. Physiol. (London) 251: 131–144.Google Scholar
  6. 6.
    Gennaro, J.F., Nastuk, W.L. and Rutherford, D.T. (1978): J. Phys iol. (London) 280: 237–247.Google Scholar
  7. 7.
    Gorio, A., Hurlbut, W. P. and Ceccarelli, B. (1978): J. Cell Biol. 78: 716–733.CrossRefGoogle Scholar
  8. 8.
    Hebb, C.O., Krnjevic, K. and Silver, A. (1964): J. Physiol. (London) 171: 504–513.Google Scholar
  9. 9.
    Heuser,J.E. andMiledi,R. (1971): Proc. R. Soc. London B179: 247–260.CrossRefGoogle Scholar
  10. 10.
    Israel, M. and Dunant, Y. (1979): In Progress in Brain Res., Vol 49, (ed) S. Tucek, Amsterdam, Elsevier, pp. 125–139.Google Scholar
  11. 11.
    Israel, M., Dunant, Y. and Manaranche, R. (1979): Progr. Neurobiol. 13: 237–275.CrossRefGoogle Scholar
  12. 12.
    Katz, B. andMiledi, R. (1977): Proc. R. Soc. London B196: 59–72.CrossRefGoogle Scholar
  13. 13.
    Katz, B. and Miledi, R. (1981): Proc. R. Soc. London B212: 131–137.CrossRefGoogle Scholar
  14. 14.
    Katz, B. andMiledi, R. (1982): Proc. R. Soc. London B216: 497–507.CrossRefGoogle Scholar
  15. 15.
    Kuffler, S.W. and Yoshikami, D. (1975): J. Physiol. (London) 251: 465–482.Google Scholar
  16. 16.
    Marchbanks, R.M. (1975): In Metabolic Compartmentation and Neurotransmission (ed) S. Berl, New York, Plenum Press, pp. 609–620.Google Scholar
  17. 17.
    Marchbanks, R.M. and Israel, M. (1971): J. Neurochem. 18: 439–448.CrossRefGoogle Scholar
  18. 18.
    Matthews-Bellinger, J. and Salpeter, M.M. (1978): J. Physiol. (London) 279: 197–213.Google Scholar
  19. 19.
    Miledi, R., Molenaar, P.C. and Polak, R.L. (1977): Proc. R. Soc. London B197: 285–297.CrossRefGoogle Scholar
  20. 20.
    Miledi, R., Molenaar, P.C. and Polak, R.L. (1978): In Cholinergic Mechanisms and Psychopharmacology (ed) D.J. Jenden, New York, Plenum Press, pp. 377–386.Google Scholar
  21. 21.
    Miledi, R., Molenaar, P.C. and Polak, R.L. (1980): J. Physiol. London 309: 199–214.Google Scholar
  22. 22.
    Miledi, R., Molenaar, P.C. and Polak, R.L. (1981): In Cholinergic Mechanisms (eds) G. Pepeu and H. Ladinsky, New York, Plenum Press, pp. 205–214.Google Scholar
  23. 23.
    Miledi, R., Molenaar, P C. and Polak, R.L. (1982): J. Physiol. London 333: 189–199.Google Scholar
  24. 24.
    Miledi, R., Molenaar, P.C. and Polak, R.L. (1983): J. Physiol. London 334: 245–254.Google Scholar
  25. 25.
    Mitchell, J.F. and Silver, A. (1963): J. Physiol. London 165: 117–129.Google Scholar
  26. 26.
    Molenaar, P.C. and Polak, R.L. (1980): J. Neurochem. 35: 1021–1025.CrossRefGoogle Scholar
  27. 27.
    Tauc, L. (1979): Biochem. Pharmac. 27: 3493–3498.CrossRefGoogle Scholar
  28. 28.
    Tucek, S. (1982) J. Physiol. London 322: 53–69.Google Scholar
  29. 29.
    von Wedel, R.J., Carlson, S.S. and Kelly, R.B. (1981): Proc. Natl. Acad. Sci. 78: 1014–1018.CrossRefGoogle Scholar
  30. 30.
    Vyskocil, F. and Illès, P. (1978): Physiologia Bohemoslov. 27: 449–455.Google Scholar
  31. 31.
    Whittaker, V.P. (1969): Progr. Brain Res. 31: 211–222.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. Miledi
    • 1
  • P. C. Molenaar
    • 2
  • R. L. Polak
    • 3
  1. 1.Department of BiophysicsUniversity College LondonLondonUK
  2. 2.Department of Pharmacology, Sylvius LaboratoriesUniversity of LeidenLeidenthe Netherlands
  3. 3.Medical Biological Laboratory/TNORijswijkthe Netherlands

Personalised recommendations