Advertisement

Determinants of Acetylcholine Levels in Aged Rats

  • D. O. Smith
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

Aged rats exhibit altered capabilities to sustain synaptic transmission at the diaphragm neuromuscular junction. For example, synaptic depression is enhanced in older animals (15). Moreover, there are associated changes in end-plate structure. In senescent animals, there are more nerve terminal branches and less sprouting and degeneration per end plate (17; cf. 4). In addition, the number of synaptic vesicles per terminal increases with age (17).

Keywords

Nerve Terminal Choline Uptake Synaptic Depression ChAT Activity Choline Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Christensen, S.N. and Martin, A.R. (1970): J. Physiol. (Lond.) 210: 933–945.Google Scholar
  2. 2.
    Cleland, W.W. (1967): Adv. Enzymol. 29: 1–32.Google Scholar
  3. 3.
    Elmqvist, D. and Quastel, D.M.J. (1965): J. Physiol. (Lond.) 178: 505–529.Google Scholar
  4. 4.
    Fahim, M.A. and Robbins, N. (1982): J. Neurocytol. 11: 641–656.CrossRefGoogle Scholar
  5. 5.
    Goldberg, A.M. and McCaman, R.E. (1973): J. Neurochem. 20: 1–8.CrossRefGoogle Scholar
  6. 6.
    Katz, B. and Miledi, R. (1977): Proc. R. Soc. Lond. B 196: 59–72.CrossRefGoogle Scholar
  7. 7.
    Katz, B. and Thesleff, S. (1957): J. Physiol. (Lond.) 137: 267–278.Google Scholar
  8. 8.
    Liley, A.W. (1956): J. Physiol. (Lond.) 132: 650–666.Google Scholar
  9. 9.
    Marchi, M., Hoffman, D.W., Giacobini, E., and Fredrickson, T. (1980): Brain Res. 195: 423–431.CrossRefGoogle Scholar
  10. 10.
    McCaman, R.E. and Stetzler, J. (1977): J. Neurochem. 28: 669–671.CrossRefGoogle Scholar
  11. 11.
    Peterson, G.L. (1977): Anal. Biochem. 83: 346–356.CrossRefGoogle Scholar
  12. 12.
    Potter, L.T. (1970): J. Physiol. (Lond.) 206: 145–166.Google Scholar
  13. 13.
    Rand, J.B. and Johnson, C.D. (1981): Anal. Biochem. 116: 361–371.CrossRefGoogle Scholar
  14. 14.
    Simon, J.R., Atweh, S., and Kuhar, M.J. (1976): J. Neurochem. 26: 909–922.CrossRefGoogle Scholar
  15. 15.
    Smith, D.O. (1979): Exptl. Neurol. 66: 650–666.CrossRefGoogle Scholar
  16. 16.
    Smith, D.O. (1984): J. Physiol. (Lond.) 347: 161–176.Google Scholar
  17. 17.
    Smith, D.O. and Rosenheimer, J.L. (1982): J. Neurophysiol. 48: 100–109.Google Scholar
  18. 18.
    Thies, R. (1965): J. Neurophysiol. 28: 427–442.Google Scholar
  19. 19.
    Tucek, S. and Gutmann, E. (1973): Exptl. Neurol. 38: 349–360.CrossRefGoogle Scholar
  20. 20.
    Vyskocil, F. and Illes, P. (1977): Pflugers Arch. 370: 295–297.CrossRefGoogle Scholar
  21. 21.
    Yamamura, H.I. and Snyder, S.H. (1973): J. Neurochem. 21: 1355–1374.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • D. O. Smith
    • 1
  1. 1.Department of PhysiologyUniversity of WisconsinMadisonUSA

Personalised recommendations