Advertisement

Sympathetic Ingrowth: A Result of Cholinergic Nerve Injury in the Adult Mammalian Brain

  • J. N. Davis
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

The brain is capable of dramatic and vigorous responses to injury. We have been studying one such rearrangement, sympathetic ingrowth, which takes place in the adult rat brain after injury to certain central cholinergic pathways. The purpose of this chapter is to describe sympathetic ingrowth, its regulation and function. Although sympathetic ingrowth appears to be an unusual and perhaps anomalous form of neuronal plasticity, its study has led to a better understanding of the molecular mechanisms that probably underlie the regulation of other neuronal rearrangements. The ability to regulate neuronal rearrangements such as sympathetic ingrowth is likely to lead to the development of pharmacological agents that may be useful to patients with brain injury, stroke or dementia.

Keywords

Nerve Growth Factor Hippocampal Formation Mossy Fiber Superior Cervical Ganglion Septal Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barker, D.J., Howard, A.J. and Gage, F.H. (1984): Brain Res. 291: 357–363.CrossRefGoogle Scholar
  2. 2.
    Björklund, A. and Stenevi, U. (1981): Brain Res. 229: 403–428.CrossRefGoogle Scholar
  3. 3.
    Crawford, J.D. and Connor, J.D. (1972): J. Neurochem. 19: 1451–1458.Google Scholar
  4. 4.
    Crutcher, K.A. 91981): Exp. Neurol. 74: 324–329.Google Scholar
  5. 5.
    Crutcher, K.A., Brothers, L. and Davis, J.N. (1979): Neurol. 66: 778–783.Google Scholar
  6. 6.
    Crutcher, K.A., Brothers, L. and Davis, J.N. (1981): Bainres. 210: 115–128.Google Scholar
  7. 7.
    Crutcher, K.A., Kessner, R.P. and Novak, J.M. (1983): Brain Res. 262: 91–98.CrossRefGoogle Scholar
  8. 8.
    Crutcher, K.A. and Davis, J.N. (1980): Exp. Neurol. 2Q: 187–191.CrossRefGoogle Scholar
  9. 9.
    Crutcher, K.A. and Davis, J.N. (1981): Brain Res. 204: 410–414.CrossRefGoogle Scholar
  10. 10.
    Crutcher, K.A. and Davis, J. N. (1982): Exp. Neurol. 75: 347–359.CrossRefGoogle Scholar
  11. 11.
    Crutcher, K.A. and Collins, F. (1982): Science 217: 67–68.CrossRefGoogle Scholar
  12. 12.
    Davis, J.N. and Martin, B. (1982): Brain Res. 247: 1245–1248.CrossRefGoogle Scholar
  13. 13.
    Harrell, L.E., Barlow, T.S. and Davis,J.N. (1983): Exp. Neurol 82: 379–390.CrossRefGoogle Scholar
  14. 14.
    Harrell, L.E. and Davis,J.N. (1984): Exp. Neurol. 85: 128–138CrossRefGoogle Scholar
  15. 15.
    Harrell, L.E. and Davis, J.N. (1985): Neurosci., in press.Google Scholar
  16. 16.
    Kimble, D.P., Anderson, S., BreMiller, R. and Dannen, E. (1979) Physiol. Behay. 22: 461–466.CrossRefGoogle Scholar
  17. 17.
    LaForet, G. and Davis, J.N. (1983): Neurosci. Abstr. 9: 12–23Google Scholar
  18. 18.
    Levi-Montalcini, R., Chen, M.G.M. and Chen, J.S. (1978): Zoon 6: 201–212.Google Scholar
  19. 19.
    Loy, R. and Moore, R.Y. (1977): Exp. Neurol. 57: 645–650.CrossRefGoogle Scholar
  20. 20.
    Loy, R., Milner, T.A. and Moore, R.Y. (1980): Exp. Neurol 67: 399–411.CrossRefGoogle Scholar
  21. 21.
    Lynch, G.S., Matthews, D.A., Mosko, S., Parks, T. and Cotman, C.W. (1972): Brain Res. 42: 311–318.CrossRefGoogle Scholar
  22. 22.
    Madison, R.A., Crutcher, K.A. and Davis, J.N. (1981): Brain Res. 213: 183–187.CrossRefGoogle Scholar
  23. 23.
    Madison, R.A. and Davis, J.N. (1983): Brain Res. 270: 1–9.CrossRefGoogle Scholar
  24. 24.
    Madison, R.A. and Davis, J.N. (1983): Exp. Neurol. 80: 167–177.CrossRefGoogle Scholar
  25. 25.
    McKinney, M., Coyle, J.T. and Hedreen, J.C. (1983): J. Comp. Neurol. 217: 103–121.CrossRefGoogle Scholar
  26. 26.
    McNicholas, L.F.,Martin,W.R.,Sloan,J.W. and Nozaki,M. (1980): Exp. Neurol. 69: 383–394.CrossRefGoogle Scholar
  27. 27.
    Milner, T.A. and Loy, R. (1980): Anat. Embryol. 161: 159–166.CrossRefGoogle Scholar
  28. 28.
    Patterson, P.H., Reichardt, L.F. and Chen, L.L.Y. (1976): Cold Spring Harbor Symp. Quant. Biol. 40: 389–397.CrossRefGoogle Scholar
  29. 29.
    Pattison, S.E. and Dunn, M.F. (1975): Biochemistry 14: 2733–2739.CrossRefGoogle Scholar
  30. 30.
    Peterson, G.M. and Loy, R. (1983): Brain Res. 264: 21–29.CrossRefGoogle Scholar
  31. 31.
    Rotter, A. and Jacobowitz, D.W. (1981): Brain Res. Bull. 6: 525–529.CrossRefGoogle Scholar
  32. 32.
    Scheff, S.W., Bernardo, L.S. and Cotman, C.W. (1978): Science 202: 775–778.CrossRefGoogle Scholar
  33. 33.
    Schwab, M.E., Otten, U., Agid, Y. and Thoenen, H. (1979): Brain Res. 168: 473–483.CrossRefGoogle Scholar
  34. 34.
    Stenevi, U. and Bjorklund, A. (1978): Neurosci. Lett. 7: 219–224.CrossRefGoogle Scholar
  35. 35.
    Storm-Mathisen, J. (1974): Brain Res. 80: 181–197.CrossRefGoogle Scholar
  36. 36.
    Thoenen, H. and Barde, Y-A. (1980): Physiol. Rev. 60: 1284–1335.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. N. Davis
    • 1
    • 2
  1. 1.Neurology Research LaboratoryV.A. Medical CenterDurhamUSA
  2. 2.Departments of Medicine and PharmacologyDuke University Medical CenterDurhamUSA

Personalised recommendations