Studies of Two Novel Presynaptic Toxins

  • W. O. McClure
  • D. E. Baxter
  • R. Brusca
  • R. D. Crosland
  • T. H. Hsiao
  • M. L. Koenig
  • J. V. Martin
  • J. E. Yoshino
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

The use of toxins has been widespread in examining a number of biological phenomena. Every undergraduate in an introductory course in biochemistry is aware of the toxins which inhibit the electron transport system and oxidative phosphorylation, and appreciates the value of these molecules in the understanding of complex biological processes. Our laboratory has long agreed with others in our field that toxins would be useful - in fact, would probably be essential — in unravelling the molecular mechanisms which control release of neurotransmitters at synaptic terminals. We have limited our work to toxins which are active at the presynaptic terminal, for we wish to consider only the relese of neurotransmitter. We have further restricted our attention to toxins which stimulate release, and have avoided working with those which inhibit release. It is worthwhile to examine the logic behind this decision. In Fig. 1 is presented a sketch of the biochemical steps involved in a mechanism of release of the neurotransmitter, acetylcholine (ACh).

Keywords

Presynaptic Terminal Choline Chloride Electron Transport System Synaptic Terminal Hill Plot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crosland, R.D., Hsiao, T.H. and McClure, W.O. (1984): Biochemistry 23: 734–741.CrossRefGoogle Scholar
  2. 2.
    Gray, E.G. and Whittaker, V.P. (1962): J. Anat. 96: 79–87.Google Scholar
  3. 3.
    Goldberg, A.M. and McCaman, R.E. (1973): J. Neurochem. 31: 1005–1013.Google Scholar
  4. 4.
    Katz, B. andMiledi, R. (1967): J. Physiol. ( London ) 189: 535–544.Google Scholar
  5. 5.
    Katz, B. andMiledi, R. (1967): J. Physiol. ( London ) 192: 407–436.Google Scholar
  6. 6.
    Llinas, R., Blinks, J.R. and Nicholson, C. (1972): Science 176: 1127–1128.CrossRefGoogle Scholar
  7. 7.
    Llinas, R., Steinberg, I.Z. and Walton, K. (1976): Proc. Nat. Acad. Sci. USA 73: 2918–2922.CrossRefGoogle Scholar
  8. 8.
    McClure, W.O., Abbott, B.C., Baxter, D.E., Hsiao, T.H., Satin, L.S., Siger, A. and Yoshino, J.E. (1980): Proc. Nat.Acad. Sci. USA 22: 1219–1223.CrossRefGoogle Scholar
  9. 9.
    Sims, P.J., Waggoner, A.S., Wang, C.H. and Hoffman, J.F. (1974): Biochemistry 13: 3315–3330.CrossRefGoogle Scholar
  10. 10.
    Yoshino, J.E., Baxter, D.E., Hsiao, T.H. and McClure,W.0. (1980): J. Neurochem. 34: 635–642.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • W. O. McClure
    • 1
  • D. E. Baxter
    • 1
  • R. Brusca
    • 1
  • R. D. Crosland
    • 1
  • T. H. Hsiao
    • 1
  • M. L. Koenig
    • 1
  • J. V. Martin
    • 1
  • J. E. Yoshino
    • 1
  1. 1.Section of NeurobiologyUniversity of Southern CaliforniaUniversity Park, Los AngelesUSA

Personalised recommendations