Advertisement

Cortical Cholinergic Hypofunction and Behavioral Impairment Produced by Basal Forebrain Lesions in the Rat

  • B. E. Lerer
  • E. Gamzu
  • E. Friedman
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

The magnocellular nuclei of the basal forebrain (MNBF) provide extensive cholinergic innervation to fronto-parietal cortex (5, 13, 27, 28). In the rat, these large cells comprise the homologue of the human nucleus basalis of Meynert, which has been implicated in the cholinergic hypothesis of cognitive dysfunction in Alzheimer’s disease (AD, for a review see 3). AD patients suffer severe and progressive declines in cognitive and behavioral functions that are correlated with pronounced deficits in neocortical choline acetyltransferase (ChAT) and acetylcholinesterase activities (23). This suggests that cortical cholinergic dysfunction may underlie certain learning and memory deficits in AD. The present communication is part of an ongoing effort aimed at investigating the role of the MNBF-cortical pathway in memory and developing a useful animal model of AD (8, 18).

Keywords

Passive Avoidance Kainic Acid Behavioral Deficit Passive Avoidance Task ChAT Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Black, A.H., Nadel, L. and O’Keefe, J. (1977): Psychol. Bull. 84: 1107–1129.CrossRefGoogle Scholar
  2. 2.
    Boff, E., Gamzu, E., Poonian, D. and Zolcinski, M. (1982): Soc. Neurosci. Abstr. 8: 320.Google Scholar
  3. 3.
    Coyle, J.T., Price, D. and DeLong, M. (1983): Science 219: 1184–1190.CrossRefGoogle Scholar
  4. 4.
    Davies, P. (1979): Brain Res. 171: 319–327.CrossRefGoogle Scholar
  5. 5.
    Divac, I. (1975): Brain Res. 93: 385–398.CrossRefGoogle Scholar
  6. 6.
    Fibiger, H.C. and Lehmann, J. (1981): In: Cholinergic Mechanisms: Advances in Behavioral Biology, Vol. 25 (eds) G. Pepeu and H. Ladinsky, Plenum Press, New York, pp. 663–672.Google Scholar
  7. 7.
    Flicker, C., Dean, R.L., Watkins, D.L., Fisher, S.K. and Bartus, R.T. (1983): Pharmacol. Biochem. Behay. 18: 973–981.CrossRefGoogle Scholar
  8. 8.
    Friedman, E.F., Lerer, B. and Kuster, J. (1983): Pharmacol. Biochem. Behay. 19: 309–312.CrossRefGoogle Scholar
  9. 9.
    Gamzu, E., Boff, E., Zolcinski, M., Vincent, G. and Verederese, T. (1983): Soc. Neurosci. Abstr. 9: 824.Google Scholar
  10. 10.
    Green, R.H., Beatty, W.W. and Schwartzbaum, J.S. (1967): J. Comp. Physiol. Psychol. 64: 444–452.Google Scholar
  11. 11.
    Heise, G.A. and Boff, E. (1971): Neuropharmacology 10: 259–266.CrossRefGoogle Scholar
  12. 12.
    Hughey, D. and Friedman, E. (1983): Soc. Neurosci. Abstr. 9: 648.Google Scholar
  13. 13.
    Johnston, M.V., McKinney, M. and Coyle, J.T. (1981): Exp. Brain Res. 43: 159–172.CrossRefGoogle Scholar
  14. 14.
    Kelly, P.H. and Moore, K.E. (1978): Exp. Neurol. 61: 479–484.CrossRefGoogle Scholar
  15. 15.
    Kuhar, M.J., Sethy, V.H., Roth, R.H. and Aghajanian, G.K. (1973): J. Neurochem. 20: 581–593.CrossRefGoogle Scholar
  16. 16.
    Lehmann, J., Nagy, J.I., Atmadja, S. and Fibiger, H.C. (1980): Neuroscience 5: 1161–1174.CrossRefGoogle Scholar
  17. 17.
    Lerer, B. and Friedman, E. (1982): Soc. Neurosci. Abstr. 8: 838.Google Scholar
  18. 18.
    Lerer, B. and Friedman, E. (1983): In: Alzheimer’s Disease (ed) B. Reisberg, Macmillan, New York, pp. 421–427.Google Scholar
  19. 19.
    LoConte, G., Bartolini, L., Casamenti, F., Marconcini-Pepeu, I. and Pepeu, G. (1982): Pharmacol. Biochem. Behay. 17: 933–937.CrossRefGoogle Scholar
  20. 20.
    Lowry, 0.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951): J. Biol. Chem. 193: 265–275.Google Scholar
  21. 21.
    Meller, E. and Friedman, E. (1982): J. Pharmacol. Exp. Ther. 220: 609–615.Google Scholar
  22. 22.
    O’Keefe, J. and Nadel, L. (1978): The Hippocampus as a Cognitive Map, Oxford University Press, Oxford.Google Scholar
  23. 23.
    Perry, E.K., Tomlinson, B.E., Blessed, G., Bergman, K., Gibson, P.H. and Perry, R.H. (1978): Br. Med. J. 52: 1457–1459.CrossRefGoogle Scholar
  24. 24.
    Riess, D. (1971): Psychonomic Sci. 25: 283–286.MathSciNetGoogle Scholar
  25. 25.
    Sanberg, P.R., Lehmann, J. and Fibiger, H.C. (1978): Brain Res. 149: 546–551.CrossRefGoogle Scholar
  26. 26.
    Sanberg, P.R., Pisa, M. and Fibiger, H.C. (1979): Pharmacol. Biochem. Behay. 10: 137–144.CrossRefGoogle Scholar
  27. 27.
    Shute, C.C.D. and Lewis, P.R. (1967): Brain 90: 497–520.CrossRefGoogle Scholar
  28. 28.
    Wenk, H., Bigl, V. and Mayer, V. (1980): Brain Res. 203: 295–316.Google Scholar
  29. 29.
    Winocur, G. (1974): J. Comp. Physiol. Psychol. 86: 432–439.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • B. E. Lerer
    • 1
  • E. Gamzu
    • 2
  • E. Friedman
    • 3
  1. 1.CNS Diseases Research DuPont PharmaceuticalsWilmingtonUSA
  2. 2.Pharmacology IHoffman-LaRoche Inc.NutleyUSA
  3. 3.Departments of Psychiatry and PharmacologyNew York University Medical CenterNew YorkUSA

Personalised recommendations