Advertisement

A New Pharmacological Tool to Study Acetylcholine Storage in Nerve Terminals

  • S. M. Parsons
  • D. C. Anderson
  • B. A. Bahr
  • G. A. Rogers
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

Synaptic vesicles isolated from the electric organ of Torpedo californica exhibit MgATP stimulated uptake of tritium labelled acetylcholine, [3H]ACh. The process probably is mediated by a proton pumping ATPase which acidifies the interior of the vesicles (7, 8, 17, 18). A hypothesized separate ACh transporter protein in the vesicle membrane appears to utilize the vesicle membrane pH gradient to drive concentrative uptake of exogenous [3H]ACh (1, 15, 16).

Keywords

Synaptic Vesicle Optical Isomer Vesicle Suspension Vesicle Concentration Torpedo Electric Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D.C., King, S. C. and Parsons, S.M. (1982): Biochemistry 21: 3037–3043.CrossRefGoogle Scholar
  2. 2.
    Anderson, D.C., King, S. C. and Parsons, S.M. (1983): Molec. Pharmacol. 24: 55–59.Google Scholar
  3. 3.
    Anderson, D.C., King, S. C. and Parsons, S.M. (1983): Molec.Pharmacol. 24: 48–54.Google Scholar
  4. 4.
    Anderson, D.C., Bahr, B.A. and Parsons, S.M. (1985): J. Neurochem., submitted.Google Scholar
  5. 5.
    Bahr, B.A. and Parsons, S.M. (1985): J. Neurochem., submitted.Google Scholar
  6. 6.
    Bowman, W.C. and Marshall, I.G. (1972): Internat. Encyclo.Pharmacol. therp., Sec. 141: 377–378.Google Scholar
  7. 7.
    Breer, H., Morris, S.J. and Whittaker, V.P. (1977): Eur. J. Biochem. 80: 313–318.CrossRefGoogle Scholar
  8. 8.
    Fuldner, H.H. and Stadler, H. (1982): Eur. J. Biochem. 121: 519524.Google Scholar
  9. 9.
    Isragl, M. and Lesbats, B. (1981): J. Neurochem. 37: 1475–1483.CrossRefGoogle Scholar
  10. 10.
    Marshall, I.G. (1970): Br. J. Pharmacol. 38:503–516.Google Scholar
  11. 11.
    Marshall, I.G. (1970): Br. J. Pharmacol. 42: 68–77.Google Scholar
  12. 12.
    Marshall, I.G. and Parsons, R.L. (1975): Br. J. Pharmacol. 54: 333–338.Google Scholar
  13. 13.
    Michaelson, D.M. and Ophir, I. (1980): J. Neurochem. 34: 1483–1490.Google Scholar
  14. 14.
    Michaelson, D.M., Pinchasi, I., Angel, I., Ophir, I., Sokolov-sky, M. and Rudnick, G. (1979): In Molecular Mechanisms of Biological Recognition (ed) M. Balaban, Elsevier/Holland, pp. 361–372.Google Scholar
  15. 15.
    Parsons, S.M., Carpenter, R.S., Koenigsberger, R. and Rothlein, J.E. (1982): Fed. Proc. 41: 2765–2768.Google Scholar
  16. 16.
    Parsons, S.M. and Koenigsberger, R. (1980): Proc. Nat’l. Acad. Sci. U.S.A. 77: 6234–6238.CrossRefGoogle Scholar
  17. 17.
    Rothlein, J.E. and Parsons, S.M. (1979): Biochem. Biophys. Res. Comm. 88: 1069–1076.CrossRefGoogle Scholar
  18. 18.
    Rothlein, J.E. and Parsons, S.M. (1982): J. Neurochem. 39: 1660–1668.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. M. Parsons
    • 1
  • D. C. Anderson
    • 1
  • B. A. Bahr
    • 1
  • G. A. Rogers
    • 1
  1. 1.Department of ChemistryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations