Long-Term Effects of AF64A on Learning and Memory Processes in the Rat

  • T. J. Walsh
  • D. L. DeHaven
  • A. Russell
  • I. Hanin
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


Acetylcholine (ACh) and the cholinergic system have long been implicated in cognitive processes. Studies of the molecular events which contribute to learning and memory consolidation suggest an important, if not essential, role for this transmitter system in associative mechanisms. For example, cholinergic activity indexed by ACh concentrations and high affinity choline transport (HAChT) is enhanced in a region-dependent manner subsequent to a learning experience (18, 25). Furthermore, drugs that inhibit cholinergic tone, and lesions of either the nucleus basalis of Meynert or the medial septum, structures providing the cholinergic input to the neocortex and the limbic system, also impair cognitive processes (1, 2, 6, 9, 10, 15, 21, 29). In contrast, cholinomimetics, like physostigmine and arecoline, typically improve these processes (1, 3).


Cholinergic System Medial Septum Dark Compartment Maze Performance Passive Avoidance Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartus, R.T., Dean, R.L., Beer, B. and Lippa,A.S. (1982): Science 217: 408–417CrossRefGoogle Scholar
  2. 2.
    Beatty, W.W. and Carbone, C.P. (1980): Physiol. Behay. 24: 675–678.CrossRefGoogle Scholar
  3. 3.
    Buresova, O. and Bures, J. (1982): Psychopharmacology77:268–271.Google Scholar
  4. 4.
    Coyle, J.T., Price, D.L. and DeLong, M.R. (1983): Science219: 1184–1190.Google Scholar
  5. 5.
    Drachman, D.A. and Sahalian, B.J. (1980): In The Psychobiology of Aging: Problems and Perspectives (ed) D.G.Stein, Elsevier, North Holland, pp. 348–368.Google Scholar
  6. 6.
    Eckerman, D.A., Gordon, W.A., Edwards, J.D., MacPhail, R.C. and Gage, M.I. (1980): Pharmacol. Biochem. Behay. 12: 595–602.CrossRefGoogle Scholar
  7. 7.
    Fisher, A. and Hanin, I. (1980): Life Sci. 27: 1615–1643.CrossRefGoogle Scholar
  8. 8.
    Fisher, A., Mantione, C.R., Abraham, D.J. and Hanin, I. (1982): J. Pharmacol. Exp. Ther. 222: 140–145.Google Scholar
  9. 9.
    Flicker, C., Dean, R.L., Watkins, D.L., Fisher, S.K. and Bartus, R.T. (1983): Pharmacol. Biochem. Behay. 18: 973–981.CrossRefGoogle Scholar
  10. 10.
    Gray, J.A. and McNaughton, J. (1983): Neurosci. Biobehay. Rev. 2: 119–188.CrossRefGoogle Scholar
  11. 11.
    Hanin, I. and Skinner, R.F. (1975): Anal. Biochem. 66: 568–583.CrossRefGoogle Scholar
  12. 12.
    Keller, R., Oke, A., Mefford, I. and Adams, R.N. (1976): Life Sci. 19: 995–1004.CrossRefGoogle Scholar
  13. 13.
    Kilts, C.D., Breese, G.R. and Mailman, R.B. (1981): J. Chroma-tog. 225: 347–357.Google Scholar
  14. 14.
    Kolb, B., Sutherland, R.J. and Whishaw, I.Q. (1983): Behay. Neurosci. 907: 13–27.CrossRefGoogle Scholar
  15. 15.
    Lo Conte, G., Bàrtolini, L., Casamenti, F., Marconi-Pepeu, I. and Pepeu, G. (1982): Pharmacol. Biochem. Behay. 17: 933–937.CrossRefGoogle Scholar
  16. 16.
    Mailman, R.B., Krigman, M.R., Frye, G.D. and Hanin, I. (1983): J. Neurochem. 40: 1423–1429.CrossRefGoogle Scholar
  17. 17.
    Mantione, C.R., Fisher, A. and Hanin, I. (1984): Life Sci. 35: 33–41.CrossRefGoogle Scholar
  18. 18.
    Matthies, H., Rauca, C.H. and Liebman, H. (1974): J. Neurochem. 23: 1109–1113.CrossRefGoogle Scholar
  19. 19.
    Nakano, I. and Hirano, A. (1983): Ann. Neurol. 13: 87–91.CrossRefGoogle Scholar
  20. 20.
    Olton, D.S. and Samuelson, R.J. (1976): J. Exp. Psychol. 2: 97–116.Google Scholar
  21. 21.
    Olton, D.S., Becker, J.T. and Handelman, G.E. (1979): Behay. Brain Sci. 2: 313–365.CrossRefGoogle Scholar
  22. 22.
    Perlmutter, M., Metzger, R., Nezworski, T. and Miller, K. (1981): J. Gerontol. 36; 59–65.Google Scholar
  23. 23.
    Perry, E.K., Tomlinson, B.E., Blessed, G., Bergman, K., Gibson, P.H. and Perry, R.H. (1978): Brit. Med. J. 2: 1457–1459.Google Scholar
  24. 24.
    Price, D.L., Whitehouse, P.J., Struble, R.G., Clark, A.W., Coyle, J.T., DeLong, M.R. and Hedreen, J.C. (1982): Neurosci. Comment. 1: 84–92.Google Scholar
  25. 25.
    Raaijmakers, W.G.M. (1982): In Neuronal Plasticity and Memory Formation (eds) C. Marsan and H. Matthies, Raven Press, New York, pp. 373–385.Google Scholar
  26. 26.
    Sims, N.R., Bowen, D.M., Allen, S.J., Smith, C.C.T., Neary, D., Thomas, D.T. and Davison, A.N. (1983): J. Neurochem. 40: 503–509.CrossRefGoogle Scholar
  27. 27.
    Terry, R.D. and Davies, P. (1980): Ann. Rev. Neurosci. 3: 77–95.CrossRefGoogle Scholar
  28. 28.
    Wallace,J.E., Drauter, E.E. and Campbell, B.A. (1980): J. Gerontol. 35: 355–363.Google Scholar
  29. 29.
    Walsh, T.J., Miller, D.B. and Dyer, R.A. (1982): Neurobehay. Toxicol. Teratol. 4: 177–183.Google Scholar
  30. 30.
    Walsh, T.J., Tilson, H.A., DeHaven, D.L., Mailman, R.B., Fisher, A. and Hanin, I. (1984): Brain Research 321: 91–102.CrossRefGoogle Scholar
  31. 31.
    Whitehouse, P.J., Price, D.L.; Struble, R.G., Clark, A.W., Coyle, J.T. and DeLong, M.R. (1982): Science 215: 1237–1239.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • T. J. Walsh
    • 1
  • D. L. DeHaven
    • 2
  • A. Russell
    • 3
  • I. Hanin
    • 3
  1. 1.Laboratory of Behavioral and Neurological ToxicologyNIEHSResearch Triangle ParkUSA
  2. 2.Biological Sciences Research CenterUniversity of North Carolina School of MedicineChapel HillUSA
  3. 3.Western Psychiatric Institute and ClinicUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations