Advertisement

Serotonin and a Role in the Modulation of Cholinergic Transmission in the Mammalian Prevertebral Ganglia

  • N. J. Dun
  • R. C. Ma
  • M. Kiraly
  • A. G. Karczmar
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)

Abstract

The view that sympathetic ganglia receive synaptic inputs exclusively from cholinergic preganglionic neurons situated in the spinal cord is undergoing rapid revision as evidence accumulated in the past few years clearly indicates that sympathetic ganglia, particularly the abdominal prevertebral ganglia (celiac-superior mesenteric plexus and inferior mesenteric ganglion) receive cholinergic as well as non-cholinergic inputs from the central and/or peripheral nervous system (3, 4, 23).

Keywords

Sympathetic Ganglion Membrane Resistance Krebs Solution Splanchnic Nerve Celiac Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Costa, M., Furness, J.B., Cuello,A.C.,Verhofstad,A.A.J., Steinbusch, H.W.J. and Elde, R.P. (1982): Neurosci. 7: 351–363.CrossRefGoogle Scholar
  2. 2.
    Dalsgaard, C.J. Hokfelt, T., Elfvin, L.G., Skirboll, L. andEmson, P. (1982): Neurosci. 7: 647–654.CrossRefGoogle Scholar
  3. 3.
    Dun, N.J. (1983): Autonomic Ganglia (ed) L.G. Elfvin,John Wiley & Sons, Chichester, pp. 345–366.Google Scholar
  4. 4.
    Dun, N.J. and Jiang, Z.G. (1982): J. Physiol. ( London ) 325: 145–159.Google Scholar
  5. 5.
    Dun, N.J. and Karczmar, A.G. (1979): Neuropharmacol. 18: 215–218.CrossRefGoogle Scholar
  6. 6.
    Dun, N.J. and Kiraly, M. (1983): J. Physiol. ( London ) 340: 107–120.Google Scholar
  7. 7.
    Dun, N.J. and Ma, R.C. (1984): J. Physiol. ( London ) 351: 47–60.Google Scholar
  8. 8.
    Dun, N.J. and Minota, S. (1981): J. Physiol. ( London ) 321: 259–271.Google Scholar
  9. 9.
    Dun, N.J., Kiraly, M. and Ma, R.C. (1984): J. Physiol. ( London ) 351: 61–76.Google Scholar
  10. 10.
    Elfvin, L.G., Hokfelt, T. and Goldstein, M. (1975): J. Ultra- struc. Res. 51: 377–396.Google Scholar
  11. 11.
    Fernstrom, J.D. and Wurtman, R.J. (1971): Science 173: 149–152.CrossRefGoogle Scholar
  12. 12.
    Fuller, R.W. and Wong, D.T. (1977): Fed. Proc. 36: 2154–2158.Google Scholar
  13. 13.
    Gerschenfeld, H.M. and Paupardin-Tritsch, D. (1974): J. Physiol. ( London ) 243: 427–456.Google Scholar
  14. 14.
    Gyermek, L. (1966): In 5-hydroxytryptamine and Related Indolealkylamines (ed) V. Erspamer, Handbuch der Experimentellen Pharmakologie, Springer-Verley, Berlin, pp. 471–528.Google Scholar
  15. 15.
    Hadjiconstantinou, M. Potter, P.E. and Neff, N.H. (1982): J. Neurosci. 2: 1836–1839.Google Scholar
  16. 16.
    Haigler, H.J. and Aghajanian, G.K. (1977): Fed. Proc. 36: 2159 2164.Google Scholar
  17. 17.
    Jiang, Z.G., Dun, N.J. and Karczmar, A.G. (1982): Science 217: 739–741.CrossRefGoogle Scholar
  18. 18.
    Katayama, Y. and North, R.A. (1978): Nature 274: 387–388.CrossRefGoogle Scholar
  19. 19.
    Kiraly, M., Ma, R.C. and Dun, N.J. (1983): Brain Res. 275:378–383.CrossRefGoogle Scholar
  20. 20.
    Matthews, M.R. and Cuello, A.C. (1982): Proc. Natl. Acad. Sci. U.S.A. 79: 1668–1672.CrossRefGoogle Scholar
  21. 21.
    Neild, T.O. (1978): Brain Res. 140: 231–239.CrossRefGoogle Scholar
  22. 22.
    Nishi, S. and Koketsu, K. (1968): J. Neurophysiol. 3: 109–121.Google Scholar
  23. 23.
    Szurszewski, J.H. (1981): Ann. Rev. Physiol. 43: 53–68.CrossRefGoogle Scholar
  24. 24.
    Tsunoo, A., Konishi, S. and Otsuka, M. (1982): Neurosci. 7: 2025–2037.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • N. J. Dun
    • 1
  • R. C. Ma
    • 1
  • M. Kiraly
    • 1
  • A. G. Karczmar
    • 1
  1. 1.Department of Pharmacology, Stritch School of MedicineLoyola UniversityMaywoodUSA

Personalised recommendations