Immunological Approach to Cholinergic Transmission: Production of Monoclonal Antibodies Against Presynaptic Membranes Isolated from the Electric Organ of Torpedo Marmorata

  • L. Eder-Colli
  • S. Amato
Part of the Advances in Behavioral Biology book series (ABBI, volume 30)


The release of the neurotransmitter acetylcholine (ACh) has been thoroughly analyzed with the techniques of electrophysiology. The events taking place at the membrane of the cholinergic nerve endings during ACh release were more recently visualized by morphological analysis of freeze fractured membranes. However, the biochemical basis of the neurotransmitter release is still poorly understood. A major question is which components of the membrane of the cholinergic nerve endings are involved in the release mechanism? One means of identifying some of these components would be to apply the monoclonal antibody strategy (13); in this way, it should be possible to isolate a monoclonal antibody with an exquisite specificity towards a given component. This antibody would then be used as a tool to purify and further characterize the antigen.


Synaptic Vesicle High Specific Activity Electric Organ Presynaptic Membrane ChAT Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benishin, C.G. and Caroll, P.T. (1983): J. Neurochem. 41: 1030–1039.CrossRefGoogle Scholar
  2. 2.
    Burke, B. Griffiths, G., Reggio, H. Louvard, D. and Warren,G. (1982): Embo J., 11: 1621–1628.Google Scholar
  3. 3.
    Burnette, W.N. (1981): Anal. Biochem. 112: 195–203.CrossRefGoogle Scholar
  4. 4.
    Eder, L., Dunant, Y. and Baumann, M. (1978): J. Neurocytol. 7: 637–647.CrossRefGoogle Scholar
  5. 5.
    Eder-Colli, L., Powell, J.F., Cuello, A.C. and Smith, A.D. (1982): Neurochem. Int. 4: 383–388.CrossRefGoogle Scholar
  6. 6.
    Ellman, G.L., Courtney, K.D., Andres, V. Jr. and Featherstone, R.M. (1961): Biochem. Pharmacol. 7: 88–95.CrossRefGoogle Scholar
  7. 7.
    Galfré, G., Howe, S.C., Milstein, C., Butcher, G.W. and Howard, J.C. (1977): Nature (Lond.) 266: 550–552.CrossRefGoogle Scholar
  8. 8.
    Hawkes, R., Niday, E. and Gordon, J. (1982): Anal. Biochem. 119: 142–147.CrossRefGoogle Scholar
  9. 9.
    Israel, M., Gautron, J. and Lesbats, B. (1970): J. Neurochem. 17: 1441–1450.CrossRefGoogle Scholar
  10. 10.
    Israël, M., Manaranche, R., Mastour-Frachon, P. and Morel, N. (1976): Biochem. J. 160: 113–115.Google Scholar
  11. 11.
    Itokawa, Y. and Cooper, J.R. (1970): Biochim. Biophys. Acta 75: 274–284.Google Scholar
  12. 12.
    Johnson, M.K. (1960): Biochem. J. 77: 610–618.Google Scholar
  13. 13.
    Khler, G. and Milstein, C. (1975): Eur. J. Immunol. 61: 511–519.Google Scholar
  14. 14.
    Laemmli, U.K. (1970): Nature (Lond.) 227: 680–685.CrossRefGoogle Scholar
  15. 15.
    Lee, S.L., Camp, S.J. and Taylor, P. (1982): J. Biol. Chem. 257: 12302–12309.Google Scholar
  16. 16.
    Li, Z.Y. and Bon. C. (1983): J. Neurochem. 40: 338–349.CrossRefGoogle Scholar
  17. 17.
    Morel, N. and Dreyfus, P. (1982): Neurochem. Int. 4: 283–288.CrossRefGoogle Scholar
  18. 18.
    Morel, N., Manaranche, R., Israel, M. and Gulik-Krzywicki, T. (1982): J. Cell Biol. 93: 349–356.CrossRefGoogle Scholar
  19. 19.
    Rossier, J., Baumann, A. and Benda, P. (1973): FEBS Lett. 32: 231–234.CrossRefGoogle Scholar
  20. 20.
    Schaffner, W. and Weissmann, C. (1973): Anal. Biochem. 56: 502–514.CrossRefGoogle Scholar
  21. 21.
    Schmidt, J. and Raftery, M.A. (1973): Anal. Biochem. 52: 349–354.CrossRefGoogle Scholar
  22. 22.
    Sobel, A., Weber, M. and Changeux, J.P. (1977): Eur. J. Biochem. 80: 215–224.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • L. Eder-Colli
    • 1
  • S. Amato
    • 1
  1. 1.Departement de PharmacologieC.M.U.Geneve 4Switzerland

Personalised recommendations