Skip to main content

Quantitative Autoradiographic Localization of Central Dopamine D-1 and D-2 Receptors

  • Chapter
Neurobiology of Central D1-Dopamine Receptors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 204))

Abstract

Interest in the role of dopamine (DA) as a neurotransmitter within the central nervous system has been increasing markedly over the last several years (Kaiser and Jain, 1985); in fact, it has become the “most extensively investigated neurotransmitter in the nervous system” (Kaiser and Jain, 1985). One area that has been the subject of intensive research is the study of DA receptors. Controversies exist on the actual number of different types of DA receptors, but based on dopamine stimulated adenylate cyclase activity (Kebabian and Calne, 1979; Stoof and Kebabian, 1984) there are primarily two subtypes of DA receptors. The dopamine type-1 (D-1) receptor which is positively associated with adenylate cyclase, and the dopamine type-2 (D-2) receptor which is not associated with this enzyme or, more appropriately, negatively linked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G.K., and Bunney, B.S., 1977, Dopamine autoreceptors: Pharmacological characterization by microiontophoretic single-cell recording studies, Naunyn-Schmiedeberg’s Arch. Pharmacol., 297:1–7.

    Article  CAS  Google Scholar 

  • Anden, N.E., Carlsson, A., Dahlstrom, A., Fuxe, K., Hillarp, N.A., and Larsson, K., 1964, Demonstration and mapping out of nigro-neostriatal dopamine neurons, Life Sci., 3:523–530.

    Article  PubMed  CAS  Google Scholar 

  • Anden, N.E., Dahlstrom, A., Fuxe, K., and Larsson, K., 1965, Mapping out of catecholamine and 5-hydroxytrytamine neurons innervating the telencephalon and diencephalon, Life Sci., 4:1275–1279.

    Article  PubMed  CAS  Google Scholar 

  • Anden, N.E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U., 1966a, Ascending monoamine neurons to the telencephalon and diencephalon, Acta. Physiol. Scand., 67:313–326.

    Article  CAS  Google Scholar 

  • Anden, N.E., Fuxe, K., Hamberger, B., and Hokfelt, T., 1966b, A quantitative study on the nigrostriatal dopamine neuron system in the rat, Acta. Physiol. Scand., 67:306–312.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M., Martres, M.P., and Schwartz, J.C., 1977, In vivo binding [3H]-pimozide in mouse striatum: Effects of agonists and antagonists, Life Sci., 21:1163–1170.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M., Martres, M.P., and Schwartz, J.C., 1979, H-Domperidone: A selective ligand for dopamine receptors, Naunyn-Schmiedeberg’s Arch. Pharmacol., 308:231–237.

    Article  CAS  Google Scholar 

  • Beaulieu, M., Itoh, Y., Tepper, P., Horn, A.S., and Kebabian, J.W., 1984, N,N-disubstituted 2-aminotetralins are potent D-2 dopamine receptor agonists, Eur. J. Pharmacol., 105:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom, D.A., and Walters, J.R., 1984, Dopamine attenuates the effects of GABA on single unit activity in the globus pallidus, Brain Res., 310:23–33.

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz, B.A., Zabko-Potapovich, B., Sherman, S., Hieble, J.P., Weinstock, J., and Ohlstein, E.H., 1984, Vascular effects of SK&F 83566: A selective dopamine (DA-1) receptor antagonist, Federation Proc., 43:743.

    Google Scholar 

  • Bertler, A., Falck, B., Gottfries, C.G., Ljunggren, L., Rosengren, E., 1964, Some observations on adrenergic connections between mesencephalon and cerebral hemispheres, Acta. Pharmacol. Toxicol., 21:283–289.

    Article  CAS  Google Scholar 

  • Billard, W., Ruperto, V., Crosby, G., Iorio, L.C., and Barnett, A., 1984, Characterization of the binding of H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum, Life Sci., 35:1885–1893.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, S., Scatton, B., and Korf, J., 1979, Biochemical evidence for a transmitter role of dopamine in the rat hippocampus, Brain Res., 165:161–165.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A., and Lindvall, O., 1984, Dopamine-containing systems in the CNS, in: “Handbook of Chemical Neuroanatomy, Vol. 2: Classical Transmitters in the CNS, Part I,” A. Bjorklund and T. Hokfelt, eds., pp. 55–122, Elsevier Science Publishers, BC, Amsterdam.

    Google Scholar 

  • Cheramy, A., Nieoullon, A., Michelot, R., and Glowinski, J., 1977, Effects of intranigral application of dopamine and substance P on the in vivo release of newly synthesized [3H]-dopamine in the ipsilateral caudate nucleus of the cat, Neurosci. Lett., 4:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A.V., Arnt, J., Hyttel, J., Larsen, J.J., and Svendsen, O., 1984, Pharmacological effects of a specific dopamineD-1 antagonist SCH 23390 in comparison with neuroleptics, Life Sci., 34:1529–1540.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., and Leff, S.E., 1982, Dopamine receptors: A classification, J. Clin. Psychopharmacol., 2:329–335.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., Schneider, R., and Snyder, S.H., 1977, 3H-Spiroperidol labels dopamine receptors in pituitary and brain, Eur. J. Pharmacol., 46:377–381.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., Sibley, D.R., and Leff, S.E., 1984, Agonist interactions with dopamine receptors: Focus on radioligand-binding studies, Federation Proc, 43:2779–2784.

    CAS  Google Scholar 

  • Cross, A.H., and Waddington, J.L., 1981, Kainic acid lesions dissociate [3H]-cis-flupentixol binding sites in rat striatum, Eur. J. Pharmacol., 71:327–332.

    Article  PubMed  CAS  Google Scholar 

  • Dahlstrom, A., and Fuxe, K., 1964, Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurones, Acta. Physiol. Scand., 62(Suppl. 232):1–55.

    Google Scholar 

  • Dandridge, P.A., Kaiser, C., Brenner, M., Gaitanopoulos, D., Davis, L.D., Webb, R.L., Foley, J.J., and Sarau, H.M., 1984, Synthesis, resolution, absolute stereochemistry, and enantioselectivity of 3’,4’-dihydroxynomifensine, J. Med. Chem., 27:28–35.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, T.M., Gehlert, D.R., Yamamura, H.I., Barnett, A., and Wamsley, J.K., 1985a,D-1 dopamine receptors in the rat brain: Autoradiographic localization using [3H]-SCH 23390, Eur. J. Pharmacol., 108:323–325.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, T.M., Gehlert, D.R., and Wamsley, J.K., 1985b, Quantitative autoradiographic demonstration of high and low affinity agonist binding of D-2 dopamine receptors, Clinical Res., 33:69A.

    Google Scholar 

  • Dawson, T.M., Gehlert, D.R., McCabe, R.T., Barnett, A., and Wamsley, J.K., in press,D-1 dopamine receptors in the rat brain: A quantitative autoradiographic analysis, J. Neurosci.

    Google Scholar 

  • Denef, C., and Follebouckt, J.J., 1978, Differential effects of dopamine antagonists on prolactin secretion from cultured rat pituitary cells, Life Sci., 23:431–436.

    Article  PubMed  CAS  Google Scholar 

  • Enjalbert, A., and Bockaert, J., 1983, Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary, Mol. Pharmacol., 23:576–584.

    PubMed  CAS  Google Scholar 

  • Euvard, C., Ferland, L., DiPaolo, T., Beaulieu, M., Labrie, F., Oberlander, C., Raynaud, J.P., and Boissier, J.R., 1980, Activity of two new potent dopaminergic agonists at the striatal and anterior pituitary levels, Neuropharmacol., 19:379–386.

    Article  Google Scholar 

  • Fields, J.Z., Reisine, T.D., and Yamamura, H.I., 1977, Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H]-spiroperidol, Brain Res., 136:578–584.

    Article  PubMed  CAS  Google Scholar 

  • Flaim, K.E., Gessner, G.W., Crooke, S.T., Sarau, H.M., and Weinstock, J., 1985, Binding of a novel dopaminergic agonist radioligand [3H]-Fenoldopam (SKF 82526) to D-1 receptors in rat striatum, Life Sci., 36:1427–1436.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, S.B., Mustafa, A.A., Poat, J.A., Senior, K.A., Wait, C.P., and Woodruff, G.N., 1981a, A study on the localization of [3H]-Sulpiride binding sites on rat striatal membranes, Neuropharmacol., 20:1151–1155.

    Article  CAS  Google Scholar 

  • Freedman, S.B., Poat, J.A., and Woodruff, G.N., 1981b, Effect of guanine nucleotides on dopaminergic agonist and antagonist affinity for [3H]-Sulpiride binding sites in rat striatal membrane preparations, J. Neurochem., 37:608–612.

    Article  PubMed  CAS  Google Scholar 

  • Frey, E.A., Cote, T.E., Grewe, C.W., and Kebabian, J.W., 1982, [3H]-Spiroperidol identifies a D-2 dopamine receptor inhibiting adenylate cyclase activity in the intermediate lobe of the rat pituitary gland, Endocrinol., 110:1897–1904.

    Article  CAS  Google Scholar 

  • Fujita, N., Saito, K., Iwatsubo, K., Hirata, A., Noguchi, Y., and Yoshida, H., 1980, Binding of [3H]-apomorphine to striatal membranes prepared from rat brain after 6-hydroxydopamine and kainic acid lesions, Brain Res., 190:593–596.

    Article  PubMed  CAS  Google Scholar 

  • Gehlert, D.R., and Wamsley, J.K., 1984, Autoradiographic localization of [3H]-sulpiride binding sites in the rat brain, Eur. J. Pharmacol., 98:311–312.

    Article  PubMed  CAS  Google Scholar 

  • Gehlert, D.R., and Wamsley, J.K., 1985, Dopamine receptors in the rat brain: Quantitative autoradiographic localization using [3H]-sulpiride, Neurochem. Int., 4:717–723.

    Article  Google Scholar 

  • George, S.R., Watanabe, M., and Seeman, P., 1985, Dopamine D2 receptors in the anterior pituitary: A single population without reciprocal antagonist/agonist states, J. Neurochem., 4:1168–1177.

    Article  Google Scholar 

  • Goldberg, L.I., and Kohli, J.D., 1982, Peripheral post-synaptic dopamine (DA1) receptors, in: “Advances in Dopamine Research,” M. Kohsaka, T. Shohmori, Y. Tsukada and G.N. Woodruff, eds., pp. 41–49, Pergamon Press.

    Google Scholar 

  • Grewe, C.W., Frey, E.A., Cote, T.E., and Kebabian, J.W., 1982, YM-09151–2: A potent antagonist for a peripheral D2-dopamine receptor, Eur. J. Pharmacol., 81:149–152.

    Article  PubMed  CAS  Google Scholar 

  • Grigoriadis, D., and Seeman, P., 1985, Complete conversion of brain D2 dopamine receptors from high- to the low-affinity state for dopamine agonists, using sodium ions and guanine nucleotide, J. Neurochem., 6:1925–1935.

    Article  Google Scholar 

  • Haggendal, J., and Malmfors, T., 1963, Evidence of dopamine-containing neurons in the retina of rabbits, Acta. Physiol. Scand., 59:295–296.

    Article  CAS  Google Scholar 

  • Hahn, R.A., Wardell, J.R., Jr., Sarau, H.M., and Ridley, P.T., 1982, Characterization of the peripheral and central effects of SK&F 82526, a novel dopamine receptor agonist, J. Pharmacol. Exp. Ther., 223:305–313.

    PubMed  CAS  Google Scholar 

  • Hall, M.D., Jenner, P., Kelley, E., and Marsden, C.D., 1983, Differential anatomical location of [3H]-N,n-propylnorapomorphine and [3H]-spiperone binding sites in the striatum and substantia nigra of the rat, Br. J. Pharmacol., 79:599–610.

    Article  PubMed  CAS  Google Scholar 

  • Helmreich, I., Reimann, W., Hertting, G., and Starke, K., 1982, Are presynaptic dopamine autoreceptors and postsynaptic dopamine receptors in the rabbit caudate nucleus pharmacologically different?, Neurosci., 7:1557–1566.

    Article  Google Scholar 

  • Hollt, V., Cztonkowiski, A., and Herz, A., 1977, The demonstration in vivo of specific, binding sites for neuroleptic drugs in mouse brain, Brain Res., 130:176–183.

    Article  PubMed  CAS  Google Scholar 

  • Hollt, V., and Schubert, P., 1978, Demonstration of neuroleptic sites in mouse brain by autoradiography, Brain Res., 151:149–153.

    Article  PubMed  CAS  Google Scholar 

  • Horn, A.S., Tepper, P., Kebabian, J.W., and Beart, P.M., 1984, N-0434, a very potent and specific new D-2 dopamine receptor agonist, Eur. J. Pharmacol., 99:125–126.

    Article  PubMed  CAS  Google Scholar 

  • Howlett, D.R., Morris, H., and Nahorski, S.R., 1979, Anomalous properties of [3H]-spiperone binding sites in various areas of the rat limbic system, Mol. Pharmacol., 15:506–514.

    PubMed  CAS  Google Scholar 

  • Hyttel, J., 1983, SCH 23390 — the first selective dopamine D-1 antagonist, Eur. J. Pharmacol., 91:153–154.

    Article  PubMed  CAS  Google Scholar 

  • Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P., and Korduba, C.A., 1983, SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems, J. Pharmacol. Exp. Ther., 226:462–468.

    PubMed  CAS  Google Scholar 

  • Ishikawa, K., Ott, T., and McGaugh, J.L., 1982, Evidence for dopamine as a transmitter in dorsal hippocampus, Brain Res., 232:222–226.

    Article  PubMed  CAS  Google Scholar 

  • Jastrow, T.R., Richfield, E., and Gnegy, M.E., 1984, Quantitative autoradiography of [3H]-sulpiride binding sites in rat brain, Neurosci. Lett., 51:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P., and Marsden, C.D., 1981, Substituted benzamide drugs as selective neuroleptics, Neuropharmacology, 20:1285–1293.

    PubMed  CAS  Google Scholar 

  • Jenner, P., Theodorou, A., and Marsden, C.D., 1982, Specific receptors for substituted benzamide drugs in brain, in: “The Benzamides. Pharmacology, Neurobiology and Clinical Aspects,” M. Stanly and J. Rostrosen, eds., Vol. 35, pp. 109–141, Raven Press, New York.

    Google Scholar 

  • Kaiser, C., and Jain, T., 1985, Dopamine receptors: Functions, subtypes and emerging concepts, Medicinal Res. Rev., 5:145–229.

    Article  CAS  Google Scholar 

  • Kebabian, J.W., and Calne, D.B., 1979, Multiple receptors for dopamine, Nature, 277:93–96.

    Article  PubMed  CAS  Google Scholar 

  • Klemm, N., Murrin, L.C, and Kuhar, M.J., 1979, Neuroleptic and dopamine receptors: Autoradiographic localization of [3H]-spiperone in rat brain, Brain Res., 169:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M.J., 1985a, The mismatch problem in receptor mapping studies, Trends Neurosci., 8:190–191.

    Article  CAS  Google Scholar 

  • Kuhar, M.J., 1985b, Receptor localization with the microscope, in: “Neurotransmitter Receptor Binding,” H.I. Yamamura, S.J. Enna and M.J. Kuhar, eds., pp. 153–177, Raven Press, New York.

    Google Scholar 

  • Kuhar, M.J., Murrin, L.C, Malouf, A.T., and Klemm, N., 1978, Dopamine receptor binding in vivo: The feasibility of autoradiographic studies. Life Sci., 22:203–210.

    Article  PubMed  CAS  Google Scholar 

  • Kuhar, M.J., and Yamamura, H.I., 1975, Light autoradiographic localization of cholinergic muscarinic receptors in rat brain by specific binding of a potent antagonist, Nature (London), 253:560–561.

    Article  CAS  Google Scholar 

  • Kuhar, M.J., and Yamamura, H.I., 1976, Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography, Brain Res., 110:229–243.

    Article  PubMed  CAS  Google Scholar 

  • Laduron, P., and Leysen, J., 1977, Specific in vivo binding of neuroleptic drugs in rat brain, Biochem. Pharmacol., 26:1003–1007.

    Article  PubMed  CAS  Google Scholar 

  • Lazareno, S., and Nahorski, S.R., 1982, Selective labeling of dopamine (D2) receptors in rat striatum by [3H]-domperidone but not by [3H]-spiperone, Eur. J. Pharmacol., 81:273–285.

    Article  PubMed  CAS  Google Scholar 

  • Leff, S., Adams, L., Hyttel, J., and Creese, I., 1981, Kainic lesion dissociates striatal dopamine receptor radioligand binding sites, Eur. J. Pharmacol., 70:71–75.

    Article  PubMed  CAS  Google Scholar 

  • Leff, S.E., Chen, A., and Creese, I., 1984, Sulpiride isomers exhibit reversed stereospecificity for D-1 and D-2 dopamine receptors in the CNS, Neuropharmacol., 23:589–590.

    Article  CAS  Google Scholar 

  • Leff, S.E., Hamblin, M.W., and Creese, I. 1985, Interactions of dopamine agonists with brain D1 receptors by 3H-antagonists. Evidence for the presence of high and low affinity agonist-binding states, Mol. Pharmacol., 27:171–183.

    PubMed  CAS  Google Scholar 

  • Leff, S.E., and Creese, I., 1985, Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum, Mol. Pharmacol., 27:184–192.

    PubMed  CAS  Google Scholar 

  • Lehmann, J., Briley, M., and Langer, S.Z., 1983, Characterization of dopamine autoreceptor and H-spiperone binding sites in vitro with classical and novel dopamine receptor agonists, Eur. J. Pharmacol., 88:11–26.

    Article  PubMed  CAS  Google Scholar 

  • Leysen, J.E., Awouters, F., Kennis, L., Laduron, P.M., Vandenberk, J., and Janssen, P.A.J., 1981, Receptor binding profile of R 41 468, a novel antagonist at 5-HT2 receptors, Life Sci., 28:1015–1022.

    Article  PubMed  CAS  Google Scholar 

  • Limbird, L.E., 1981, Activation and attenuation of adenylate cyclase. The role of GTP-binding proteins as macromolecular messengers in receptor-cyclase coupling, Biochem. J., 195:1–13.

    PubMed  CAS  Google Scholar 

  • Lindvall, O., and Bjorklund, A., 1974a, The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method, Acta. Physiol. Scand., Suppl., 412:1–48.

    CAS  Google Scholar 

  • Lindvall, O., and Bjorklund, A., 1974b, The glyoxylic acid fluorescence histochemical method: A detailed account of the methodology for the visualization of central catecholamine neurons, Histochem., 39:97–127.

    Article  CAS  Google Scholar 

  • Lindvall, O., Bjorklund, A., Hokfelt, T., and Ljungdahl, A., 1973, Application of the glyoxylic acid method to vibratome sections for improved visualization of central catecholamine neurons, Histochem., 35:31–38.

    Article  CAS  Google Scholar 

  • Mailman, R.B., Schulz, D.W., and Kilts, C.D., 1985, “D1-like” dopamine receptors: Recognition sites with selectivity for SCH 23390 that are not linked to adenylate cyclase, Soc. Neurosci. Abstr., 11:313.

    Google Scholar 

  • Martres, M.P., Bouthenet, M.L., Sales, N., Sokoloff, P., and Schwartz, J.C., 1985a, Widespread distribution of brain dopamine receptors evidenced with [125I]Iodosulpride, a highly selective ligand, Science, 228:752–755.

    Article  PubMed  CAS  Google Scholar 

  • Martres, M.P., Sales, N., Bouthenet, M.L., and Schwartz, J.C., 1985b, Localisation and pharmacological characterization of D-2 dopamine receptors in rat cerebral neocortex and cerebellum using [125I]Iodosulpride, Eur. J. Pharmacol., 118:211–219.

    Article  PubMed  CAS  Google Scholar 

  • Memo, M., Govoni, S., Carboni, E., Travucchi, M., and Spano, P.F., 1983, Characterization of stereospecific binding of [3H](-)Sulpiride, a selective antagonist at dopamine-D2 receptors, in rat CNS, Pharmacol. Res. Comm., 15:191–199.

    Article  CAS  Google Scholar 

  • Moore, R.Y., and Bloom, F.E., 1978, Central catecholamine neuron systems: Anatomy and physiology of the dopamine systems, Ann. Rev. Neurosci., 1:129–169.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D.G., Marcusson, J.O., and Finch, C.E., 1984, Contamination serotonin-2 binding sites by an alpha-1 adrenergic component in assays with [3H]-spiperone, Life Sci., 34:2507–2514.

    Article  PubMed  CAS  Google Scholar 

  • Murrin, L.C, and Kuhar, M.J., 1979, Dopamine receptors in the rat frontal cortex: An autoradiographic study, Brain Res., 177:279–285.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, T., Iwata, K., Kuruma, I., and Nakamura, K., 1983, Binding study of H-RO 22–1319, a new potent antipsychotic drug — evidence for a D2 antagonist, Jpn. J. Pharmacol., 33(Suppl.):197P.

    Article  Google Scholar 

  • O’Connor, S.E., and Brown, R.A., 1982, The pharmacology of sulpiride — a dopamine receptor antagonist, Gen. Pharmacol., 13:185–193.

    Article  PubMed  Google Scholar 

  • Onali, P., Schwartz, J.P., and Costa, E., 1981, Dopaminergic modulation of adenylate cyclase stimulation of vasoactive intestinal peptide (VIP) in anterior pituitary, Proc. Natl. Acad. Sci., 78:6531–6534.

    Article  PubMed  CAS  Google Scholar 

  • Onali, P., Olianas, M.C., and Gessa, G.L., 1984, Selective blockade of dopamine D-1 receptors by SCH 23390 discloses striatal dopamine D-2 receptors mediating the inhibition of adenylate cyclase in rats, Eur. J. Pharmacol., 99:127–128.

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J.M., Niehoff, D.L., and Kuhar, M.J., 1981, [3H]-Spiperone binding sites in the brain: Autoradiographic localization of multiple receptors, Brain Res., 213:277–289.

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J.M., and Warnsley, J.K., 1984, Catecholamine receptors, in: “Handbook of Chemical Neuroanatomy, Volume 3: Classical Transmitters and Transmitter receptors in the CNS, Part II,” A. Bjorklund and T. Hokfelt, eds., pp. 325–351, Elsevier Science Publishers, BC Amsterdam.

    Google Scholar 

  • Paxinos, G., and Watson, C., 1982, “The Rat Brain in Stereotaxic Coordinates”, Academic Press, Inc., New York.

    Google Scholar 

  • Reubi, J.C., Iversen, L.L., and Jessell, T.M., 1977, Dopamine selectively increases [3H]-GABA release from slices of rat substantia nigra in vitro, Nature, 268:653–654.

    Article  Google Scholar 

  • Roberts, P.J., and Anderson, S.D. 1979, Stimulatory effect L-glutamate and related amino acids on [3H]-dopamine release from rat striatum: An in vitro model for glutamate actions, J. Neurochem., 32:1539–1545.

    Article  PubMed  CAS  Google Scholar 

  • Scatton, B., 1982, Further evidence for the involvement of D2, but not D1 dopamine receptors in dopaminergic control of striatal cholinergic transmission, Life Sci., 31:2883–2890.

    Article  PubMed  CAS  Google Scholar 

  • Scatton, B., and Dubois, A., 1985, Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]-SKF 38393, Eur. J. Pharmacol., 111:145–146.

    Article  PubMed  CAS  Google Scholar 

  • Scatton, B., Simon, H., Moal, M.L., and Bischoff, S., 1980, Origin of dopaminergic innervation of the rat hippocampal formation, Neurosci. Lett., 18:125–131.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, D.W., Stanford, E.J., and Mailman, R.B., 1985a, Subcellular localization of the SCH 23390 receptor: Dissociation from dopamine-stimulated adenylate cyclase, Soc. Neurosci. Abstr., 11:888.

    Google Scholar 

  • Schulz, D.W., Stanford, E.J., Wyrick, S.W., and Mailman, R.B., 1985b, Binding of [3H] SCH 23390 in rat brain: Regional distribution and effects of assay conditions and GTP suggest interactions at a D1-like dopamine receptor, J. Neurochem., 45:1601–1611.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, D.W., Wyrick, S.D., and Mailman, R.B., 1985c, [3H] SCH 23390 has the characteristics of a dopamine receptor ligand in the rat central nervous system, Eur. J. Pharmacol., 106:211–212.

    Article  Google Scholar 

  • Schwarcz, R., Creese, I., Coyle, J.T., and Snyder, S.H., 1978, Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum, Nature, 271:766–768.

    Article  PubMed  CAS  Google Scholar 

  • Seeman, P., Ulpian, C., Grigoriadis, D., Pri-Bar, I., and Buchman, O., 1985, Conversion of dopamine D1 receptors from high to low affinity for dopamine, Biochem. Pharmacol., 34:151–152.

    Article  PubMed  CAS  Google Scholar 

  • Setler, P.E., Sarau, H.M., Zirkle, C.L., and Saunders, H.L., 1978, The central effects of a novel dopamine agonist, Eur. J. Pharmacol., 50:419–430.

    Article  PubMed  CAS  Google Scholar 

  • Shepperson, N.B., Duval, N., Massingham, R., and Langer, S.Z., 1982, Differential blocking effects of several dopamine receptor antagonists for peripheral pre- and postsynaptic dopamine receptors in the anesthetized dog, J. Pharmacol. Exp. Ther., 221:753–761.

    PubMed  CAS  Google Scholar 

  • Sidhu, A., and Kebabian, J.W., 1985, An iodinated ligand identifying the D-1 dopamine receptor, Eur. J. Pharmacol., 113:437–440.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff, P., Brann, M., Redouane, K., Martres, M.P., Schwartz, J.C., Bouthenet, M.L., Sales, N., Mann, A., Hamdi, P., Wermuth, C.G., Roy, J., and Morgat, J.L., 1985, The use of [3H](-)-D0 710 as a selective dopaminergic ligand for binding and autoradiographic studies, Eur. J. Pharmacol., 107:243–251.

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff, P., Martres, M.P., and Schwartz, J.C., 1980, Three classes of dopamine receptor (D-2, D-3, D-4) identified by binding studies with 3H-apomorphine and H-domperidone, Naunyn-Schmiedeberg’s Arch. Pharmacol., 315:89–102.

    Article  CAS  Google Scholar 

  • Sumners, C., Dijkstra, D., DeVries, J.B., and Horn, A.S., 1981, Neurochemical and behavioral profiles of five dopamine analogues, Naunyn-Schmiedeberg’s Arch. Pharmacol., 316:304–310.

    Article  CAS  Google Scholar 

  • Stoof, J.C., and Kebabian, J.W., 1981, Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum, Nature, 294:366–368.

    Article  PubMed  CAS  Google Scholar 

  • Stoof, J.C., and Kebabian, J.W., 1984, Two dopamine receptors: Biochemistry, physiology and pharmacology, Life Sci., 35:2281–2296.

    Article  PubMed  CAS  Google Scholar 

  • Stoof, J.C., Thieme, R.E., Vrijmoed-de-Vries, M.C., and Mulder, A.H., 1979, In vitro acetylcholine release from rat caudate nucleus: A model for testing drugs with dopamine receptor activity, Naunyn-Schmiedeberg’s Arch. Pharmacol., 309:119–124.

    Article  CAS  Google Scholar 

  • Tassin, J.P., Simon, H., Herve, D., Blanc, G., LeMoal, M., Glowinski, J., and Bockaert, J., 1982, Non-dopaminergic fibers may regulate dopamine-sensitive adenylate cyclase in the prefrontal cortex and nucleus accumbens, Nature, 295:696–698.

    Article  PubMed  CAS  Google Scholar 

  • Terai, M., Usuda, S., Kuroiwa, I., Noshiro, O., and Maeno, H., 1983, Selective binding of YM-09151–2, a new potent neuroleptic, to D-2 dopaminergic receptors, Jpn. J. Pharmacol., 33:749–755.

    Article  PubMed  CAS  Google Scholar 

  • Theodorou, A., Crockett, M., Jenner, P., and Marsden, C.D., 1979, Specific binding of [3H]-sulpiride to rat striatal preparations, J. Pharm. Pharmacol., 31:424–426.

    Article  PubMed  CAS  Google Scholar 

  • Theodorou, A., Reavill, C., Jenner, P., and Marsden, C.D., 1981, Kainic acid lesions of striatum and decortication reduce specific [3H]-sulpiride binding in rats, so D-2 receptors exist post-synaptically on corticostriate afferents and striatal neurons, J. Pharm. Pharmacol., 33:439–444.

    Article  PubMed  CAS  Google Scholar 

  • Thierry, A.M., Tassin, J.P., and Glowinski, J., 1984, Biochemical and electrophysiological studies of the mesocortical dopamine system, in, “Monoamine Innervation of Cerebral Cortex,” L. Descarries, T.R. Reader, and H.H. Jasper, eds., pp. 233–261, Alan R. Liss, Inc., New York.

    Google Scholar 

  • Titus, R.D., Kornfeld, E.C, Jones, N.D., Clemens, J.A., Smalstig, E.B., Fuller, R.W., Hahn, R.A., Hynes, M.D., Mason, N.R., Wong, D.T., and Foreman, M.M., 1983, Resolution and absolute configuration of an ergoline-related dopamine agonist, trans-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H(or 2H)-pyrazolo[3,4-g]quinoline, J. Med. Chem., 26:1112–1116.

    Article  PubMed  CAS  Google Scholar 

  • Wamsley, J.K., and Palacios, J.M., 1983, Apposition techniques of autoradiography for microscopic receptor localization, in, “Current Methods in Cellular Neurobiology,” J. Barker and J. McKelvy, eds., pp. 241–268, John Wiley and Sons, New York.

    Google Scholar 

  • Wamsley, J.K., Zarbin, M.A., Birdsall, N.J.M., and Kuhar, M.J., 1980, Muscarinic cholinergic receptors: Autoradiographic localization of high and low affinity agonist binding sites, Brain Res., 200:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Wamsley, J.K., Zarbin, M.A., and Kuhar, M.J., 1984, Distribution of muscarinic cholinergic high and low affinity agonist binding sites: A light microscopic autoradiographic study, Brain Res. Bull., 12:233–243.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R.Y., 1981, Dopaminergic neurons in the rat ventral tegmental area. II. Evidence for autoregulation, Brain Res. Rev., 3:141–152.

    Article  CAS  Google Scholar 

  • Weiss, S., Sebben, M., Garcia-Sainz, J., and Bockaert, J., 1985, D2-dopamine receptor-mediated inhibition of cyclic AMP formation in striatal neurons in primary culture, Mol. Pharmacol., 27:595–599.

    PubMed  CAS  Google Scholar 

  • White F.J., and Wang, R.Y., 1984a, A10 dopamine neurons: Role of autoreceptors in determining firing rate and sensitivity to dopamine agonists, Life Sci., 34:1161–1170.

    Article  PubMed  CAS  Google Scholar 

  • White, F.J., and Wang, R.Y., 1984b, Pharmacological characterization of dopamine autoreceptors in the rat ventral tegmental area: Microiontophoretic studies, J. Pharmacol. Exp. Ther., 231:275–280.

    PubMed  CAS  Google Scholar 

  • Woodruff, G.N., and Freedman, S.B., 1981, Binding of [3H]-sulpiride to purified rat striatal synaptic membranes, Neurosci., 6:407–410.

    Article  CAS  Google Scholar 

  • Unnerstall, J.R., Niehoff, D.L., Kuhar, M.J., and Palacios, J.M., 1982, Quantitative receptor autoradiography using [3H] Ultrofilm: Application to multiple benzodiazepine receptors, J. Neurosci. Meth., 6:59–73.

    Article  CAS  Google Scholar 

  • Yamamura, H.I., Enna, S.J., and Kuhar, M.J., 1985, “Neurotransmitter Receptor Binding,” Raven Press, New York.

    Google Scholar 

  • Yamamura, H.I., Kuhar, M.J., and Snyder, S.H., 1974, In vivo identification of muscarinic cholinergic receptor binding in rat brain, Brain Res., 80:170–176.

    Article  PubMed  CAS  Google Scholar 

  • Young, W.S., III, and Kuhar, M.J., 1979, A new method for receptor autoradiography: [3H]-opioid receptors in rat brain, Brain Res., 179:255–270.

    Article  PubMed  CAS  Google Scholar 

  • Zahniser, N.R., and Dubocovich, M.L., 1983, Comparison of dopamine receptor sites labeled by [3H]S-sulpiride and [3H]-spiperone in striatum, J. Pharmacol. Exp. Ther., 227:592–599.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Dawson, T.M., Gehlert, D.R., Wamsley, J.K. (1986). Quantitative Autoradiographic Localization of Central Dopamine D-1 and D-2 Receptors. In: Breese, G.R., Creese, I. (eds) Neurobiology of Central D1-Dopamine Receptors. Advances in Experimental Medicine and Biology, vol 204. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5191-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5191-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5193-1

  • Online ISBN: 978-1-4684-5191-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics