The Multiplicity of the D1 Dopamine Receptor

  • Richard B. Mailman
  • David W. Schulz
  • Clinton D. Kilts
  • Mark H. Lewis
  • Hans Rollema
  • Steven Wyrick
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 204)

Abstract

Dopaminergic neurotransmission is known to modulate a variety of behaviors, including ambulation (Ungerstedt and Arbuthnott, 1970; Pijnenburg et al., 1976), stereotyped behaviors (Creese and Iversen, 1973), self-stimulation (Phillips and Fibiger, 1973), conditioned avoidance responding (Seiden and Carlsson, 1963), stimulus control (Ho and Huang, 1975), and feeding and drinking (Ungerstedt, 1971; Fitzsimons and Setler, 1975). It is not surprising, therefore, that drugs which are believed to act primarily as dopamine receptor agonists or antagonists have important clinical utility. Our work has sought to address two questions of some neuropharmacological importance. First, what is the nature of mechanisms by which dopamine initiates many of these psychopharmacological effects, and second, is it possible to design highly specific drugs targeted only at a selected subpopulation of dopamine receptors?

Keywords

Catecholamine Acetylcholine Prolactin Glucagon Astrocytoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bacopoulos, N.G., 1984, Dopaminergic 3H-agonist receptors in rat brain, New evidence on localization and pharmacology, Life Sci., 34: 307.PubMedCrossRefGoogle Scholar
  2. Bacopoulos, N.G., Brown, S.J., Ware, P.L., and Thron, C.D., 1983, On the mechanism of inhibition of dopamine receptor by fluphenazine, Biochem. Pharmac., 32: 930.CrossRefGoogle Scholar
  3. Billard W., Ruperto V., Crosby G., Iorio L.C., and Barnett A., 1984, Characterization of the binding of 3H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum, Life Sci ., 35: 1885.PubMedCrossRefGoogle Scholar
  4. Bockaert, J., Tassin, J.P., Thierry, A.M., Glowinski, J. and Premont, J., 1977, Characteristics of dopamine and beta-adrenergic sensitive adenylate cyclase in the frontal cerebral cortex of the rat. Comparative effects of neuroleptics on frontal cortex and striatal dopamine sensitive adenylate cyclases, Brain Res., 122: 71.Google Scholar
  5. Breese, G.R., Mueller, R.A. and Mailman, R.B., 1979, Effect of dopaminergic agonists and antagonists on in vivo cyclic nucleotide content: Relation of guanosine 3’,5’-monophosphate (cGMP) changes in cerebellum to behavior, J. Pharmacol. Exp. Ther., 209: 262.PubMedGoogle Scholar
  6. Brown, J.H. and Makman, M.H., 1972, Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine 3’,5’-cyclic monophosphate formation in intact retina, Proc. Nat. Acad. Sci. (U.S.), 69: 539.CrossRefGoogle Scholar
  7. Calne, D.B., 1980, Clinical relevance of dopamine receptor classification, Trends Pharmacol. Sci., 3: 412.CrossRefGoogle Scholar
  8. Christensen, A.V., Arnt, J., Hyttel, J., Larsen, J.-J. and Svendsen, O., 1984, Pharmacological effects of a specific dopamine D1 antagonist SCH23390 in comparison with neuroleptics, Life Sci., 34: 1529.PubMedCrossRefGoogle Scholar
  9. Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.L. and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs, Proc. Nat. Acad. Sci. (U.S.), 71:1113.CrossRefGoogle Scholar
  10. Cohen, B.M., Herschel, M., Miller, E. Mayberg, H. and Baldessarini, R.J., 1980, Radioreceptor assay of haloperidol tissue levels in the rat, Neuropharmacol., 19: 663.CrossRefGoogle Scholar
  11. Costentin, J., Dubuc, I. and Protais, P., 1983, Behavioral data suggesting the plurality of central dopamine receptors, in: “CNS Receptors: From Molecular Pharmacology to Behavior”, pp. 289–297. Mandel, P. and DeFeudis, F.V. (eds) Raven Press, New York, 1983.Google Scholar
  12. Cotman, C.W., 1974, Isolation of synaptosomal and synaptic plasma membrane fractions, Meth. Enzymol., 31: 445.PubMedCrossRefGoogle Scholar
  13. Creese, I. and Leff, S.E., 1982, Dopamine receptors: A classification, J. Clin. Psychopharmacol., 2:329.PubMedCrossRefGoogle Scholar
  14. Creese, I., Morrow, A.L., Leff, S.E., Sibley, D.R. and Hamblin, M.W., 1982, Dopamine receptors in the central nervous system, Intl. Rev. Neurobiol., 23: 255.CrossRefGoogle Scholar
  15. Creese, I., Sibley, D.R., Hamblin, M.W. and Leff, S.E., 1983, The classification of dopamine receptors: relationship to radioligand binding, Annu. Rev. Neurosci., 6: 43.PubMedCrossRefGoogle Scholar
  16. Cross, A.J., Mashal, R.D., Johnson, J.A. and Owen, F., 1983, Preferential inhibition of ligand binding to calf striatal dopamine D1 receptors by SCH 23390, Neuropharmacol., 22: 1327.CrossRefGoogle Scholar
  17. Daly, J., 1977, “Cyclic Nucleotides in the Nervous System”. Plenum Press, New York.CrossRefGoogle Scholar
  18. Daly, J.W., Bruns, R.F. and Snyder, S.H., 1981, Adenosine receptors in the central nervous system: Relationship to the central actions of methylxanthines, Life Sci., 28: 2083.PubMedCrossRefGoogle Scholar
  19. Doss, R.C., Perkins, J.P. and Harden, T.K., 1981, Recovery of beta-adrenergic receptors following long-term exposure of astrocytoma cells to catecholamines, role of protein synthesis, J. Biol. Chem., 251: 12282.Google Scholar
  20. Feenstra, M.G.P., Rollema, H., Mulder, T.B.A., DeVries, J.B. and Horn, A.S., 1983b, In vivo dopamine receptor agonist binding in rat brain: Relation with pharmacological effects, Eur. J. Pharmacol., 90: 433.PubMedCrossRefGoogle Scholar
  21. Feenstra, M.G.P., Rollema, H., Mulder, T.B.A., Westerink, B.H.C. and Horn, A.S., 1983a, In vivo dopamine receptor binding of a non-radioactively labelled agonist, dipropyl-5,6-ADTN, Acta Pharm. Sci. Suppl., 2: 203.Google Scholar
  22. Feenstra, M.G.P., Rollema, H., Mulder, T.B.A., Westerink, B.H.C. and Horn, A.S., 1983c, In vivo dopamine receptor binding studies with a non-radioactively labelled agonist, dipropyl-5,6-ADTN, Life Sci., 32: 1313.PubMedCrossRefGoogle Scholar
  23. Govoni, S., Yang, H.Y.T., Bosio, A., Pasinetti, G. and Costa, E., 1982, Possible interaction between cholecystokinin and dopamine. in: “Regulatory Peptides: From Molecular Biology to Function”, E. Costa and M. Trabucchi, eds., Raven Press, New York, p. 437.Google Scholar
  24. Grabowska-Anden, M., 1977, Modification of amphetamine-induced stereotypy in rats following inhibition of noradrenaline release by FLA-136, J. Pharm. Pharmacol., 29: 566.PubMedCrossRefGoogle Scholar
  25. Greengard, P., 1978, Phosphorylated proteins as physiological effectors, Science, 199: 146.PubMedCrossRefGoogle Scholar
  26. Haidane, J.B.S., 1957, Graphical methods in enzyme chemistry, Nature, 179: 832.CrossRefGoogle Scholar
  27. Harris, J.E., 1976, Beta adrenergic receptor-mediated adenosine cyclic 3’,5’-monophosphate accumulation in rat corpus striatum, Mol. Pharmacol., 12: 546.PubMedGoogle Scholar
  28. Ho, B.T. and Huang, J.T., 1975, Role of dopamine in d-amphetamine-induced discriminative responding, Pharmacol. Biochem. Behav., 3: 1085.PubMedCrossRefGoogle Scholar
  29. Hyttel, J., 1978, Effects of neuroleptics on 3H-haloperidol and 3H-cis(z)-flupenthixol binding and on adenylate cyclase activity in vitro, Life Sci., 23: 551.PubMedCrossRefGoogle Scholar
  30. Hyttel, J., 1983, SCH 23390 — The first selective dopamine D-1 antagonist, Eur. J. Pharmacol., 91: 153.PubMedCrossRefGoogle Scholar
  31. Hyttel, J., 1981, Similarities between the binding of 3H-piflutixol and 3H-flupentixol to rat striatal dopamine receptors in vitro, Life Sci., 28: 563.PubMedCrossRefGoogle Scholar
  32. Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P. and Korduba, C.A., 1981, SCH23390, a potential benzazepine antipsychotic with atypical effects on dopaminergic systems, Pharmacologist, 23: 137.Google Scholar
  33. Iorio, L.C., Barnett, A., Leitz, F.H., Houser, V.P. and Korduba, C.A., 1983, SCH23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems, J. Pharmacol. Exp. Ther., 226: 462.Google Scholar
  34. Iversen, L.L., 1975, Dopamine receptors in brain, Science, 188: 1084.PubMedCrossRefGoogle Scholar
  35. Iversen, L.L., Rogawski, M.A. and Miller, R.J., 1976, Comparison of the effects of neuroleptic drugs on pre-and postsynaptic dopaminergic mechanisms in the rat striatum, Mol. Pharmacol., 12: 251.PubMedGoogle Scholar
  36. Jorgensen, A.L., Hansen, V., Larsen, U.D. and Khan, A.R., 1969, Metabolism, distribution and excretion of flupenthixol, Acta Pharmacol. et Toxicol., 27: 301.CrossRefGoogle Scholar
  37. Kalivas, P.W., Widerlov, E., Stanley, D., Breese, G. and Prange, A.J., 1983, Enkephalin action on the mesolimbic system: A dopamine-dependent and a dopamine-independent increase in locomotor activity, J. Pharmacol. Exp. Ther., 227: 229.PubMedGoogle Scholar
  38. Kebabian J.W., Petzold G.L. and Greengard P., 1972, Dopamine-sensitive adenylate cyclase in caudate nucleus of rat and its similarity to the “dopamine receptor”, Proc. Nat. Acad. Sci. (U.S.), 69: 2145.CrossRefGoogle Scholar
  39. Kebabian, J.W. and Calne, D.B., 1979, Multiple receptors for dopamine, Nature, 277: 93.PubMedCrossRefGoogle Scholar
  40. Kilts, C.D., Knight, D.L. Mailman, R.B., Widerlov, E. and Breese, G.R., 1984, J. Pharmacol. Exp. Ther. 231: 334.PubMedGoogle Scholar
  41. Kilts, C.D., Dew, K.L., Ely, T.D. and Mailman, R.B., 1985, Quantification of SCH23390 [R-(+)-7-chloro-8-hydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-methyl-3-benzazepine] in brain and blood by use of reverse phase HPLC with electrochemical detection, J. Chromatog., 432: 452.Google Scholar
  42. Laduron, P.M., Verwimp, M., Janssen, P.F.M, and Leysen, J.E., 1976, Subcellular localization of dopamine-sensitive adenylate cyclase in rat brain striatum. Life Sci., 18: 433.PubMedCrossRefGoogle Scholar
  43. Laduron, P.M., 1983, Commentary: Dopamine-sensitive adenylate cyclase as a receptor site, in: “Dopamine Receptors”, Kaiser, C and Kebabian, J.W., eds., p. 22. American Chemical Society, Washington, D.C.Google Scholar
  44. Laduron, P.M., Janssen, P.F.M. and Ilien, B., 1983, Analytical subcellular fractionation of rat cortex: Resolution of serotonergic nerve endings and receptors, J. Neurochem., 41: 84.PubMedCrossRefGoogle Scholar
  45. Lewis, M.H., Widerlov, E., Knight, D.L., Kilts, C.D. and Mailman, R.B., 1983, N-oxides of phenothiazine antipsychotics: effects on in vivo and in vivo dopaminergic function, J. Pharmacol. Exp. Ther., 225: 539.PubMedGoogle Scholar
  46. Leysen J.E., Gommeren W. and Laduron P.M., 1978, Spiperone: a ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics of in vitro binding, Biochem. Pharmacol., 27:307.PubMedCrossRefGoogle Scholar
  47. Leysen, J.E. and Gommeren, W., 1981, Optimal conditions for 3H-apomorphine binding and anomalous equilibrium binding of 3H-apomorphine and 3H-spiperone to rat striatal membranes: Involvement of surface phenomena versus multiple binding sites, J. Neurochem., 36: 201.PubMedCrossRefGoogle Scholar
  48. Leysen J.E., Gommeren W. and Laduron P.M., 1979, Distinction between dopaminergic and serotonergic components of neuroleptic binding sites in limbic brain areas, Biochem. Pharmacol., 28: 447.PubMedCrossRefGoogle Scholar
  49. Mailman, R.B., Rollema, H., Schulz, D.W., DeHaven, D.L. and Lewis, M.H., 1984a, Dopamine receptor multiplicity: when the D-1 antagonist is a D-2 antagonist, Fed. Proc., 43: 1095.Google Scholar
  50. Mailman, R.B., Schulz, D.W., Lewis, M.H., Staples, L., Rollema, H. and DeHaven, D.L., 1984b, SCH-23390: A selective D-1 dopamine antagonist with potent D-2 behavioral actions, Eur. J. Pharmacol., 101: 159.PubMedCrossRefGoogle Scholar
  51. Mailman, R.B. Schulz, D. W., Kilts, C.D., Lewis, M.H., Rollema, H., Wyrick, S., 1986, Multiple forms of the D1 dopamine receptor: its linkage to adenylate cyclase and psychopharmacological effects. Psychopharmacol. Bull., (in press).Google Scholar
  52. Miller, R.J., 1975, Comparison of the inhibitory effects of neuroleptic drugs on adenylate cyclase in rat tissues stimulated by dopamine, noradrenaline, and glucagon, Biochem. Pharmacol., 25: 537.CrossRefGoogle Scholar
  53. Miller, R.J., Horn, A.S. and Iversen, L.L., 1974, Effects of dopamine-like drugs on rat striatal adenyl cyclase have implications for CNS dopamine receptor topography. Nature, 250: 238.PubMedCrossRefGoogle Scholar
  54. Mogilnicka, E. and Braestrup, C., 1976, Noradrenergic influence on the stereotyped behavior induced by amphetamine, phenylethylamine and apomorphine, J. Pharm. Pharmacol., 28: 253.PubMedCrossRefGoogle Scholar
  55. Napier, T,C., Givens, B.S., Schulz, D.W., Bunney, B.S., Breese, G.R. and Mailman, R.B., 1986, SCH23390 effects on apomorphine-induced responses of nigral dopaminergic neurons, J. Pharmacol. Exp. Ther., (in press)Google Scholar
  56. Nemeroff, C.B., Luttinger, D., Hernandez, D.E., Mailman, R.B., Mason, G.A., Davis, S.D., Frye, G.D., Beaumont, K., Breese, G.R. and Prange, A.J., 1983, Interactions of neurotensin with brain dopamine systems: biochemical and behavioral studies, J. Pharmacol. Exp. Ther., 225: 337.PubMedGoogle Scholar
  57. Niedzwiecki, D.N., Mailman, R.B. and Cubeddu, L.X., 1984, Greater potency for mesoridazine and sulforidazine than thioridazine on striatal dopamine autoreceptors, J. Pharmacol. Exp. Ther., 228: 686.Google Scholar
  58. O’Boyle, K.M., Molloy, A.G., and Waddington, J.L., 1984, Benzazepine derivatives: Nature of the selective and stereospecific interactions of SK&F 38393 and SCH 23390 with brainD-1 receptors, in: “Dopamine Systems and their Regulation”, G.N. Woodruff, ed., McMillan Press, London.Google Scholar
  59. Palkovits, M., 1973, Isolated removal of hypothalamic or other brain nuclei of the rat, Brain Res., 59: 449.PubMedCrossRefGoogle Scholar
  60. Palmer G.C., Sulser F., and Robison G.A., 1973, Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro, Neuropharmacol., 12: 327.CrossRefGoogle Scholar
  61. Phillips, A.G. and Fibiger, H.C., 1973, Dopaminergic and noradrenergic substrates of positive reinforcement: Differential effects of d- and 1-amphetamine, Science, 179: 575.PubMedCrossRefGoogle Scholar
  62. Pijnenburg, A.J.J., Honig, W.M.M., Van der Heyden, J.A.M., and Van Rossum, J.M., 1976, Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity, Eur. J. Pharmacol., 35: 45.PubMedCrossRefGoogle Scholar
  63. Rollema, H., Feenstra, M.G.P., Grol, C.J., Lewis, M.H., Staples, L. and Mailman, R.B., 1986, (-)-Dipropyl-5,6-ADTN as an in vivo dopamine receptor ligand: relation between displacement by dopamine agonists and their pharmacological effects. Naunyn-Schmiedeberg’s Arch. Pharmacol., (in press).Google Scholar
  64. Quik M., Emson P.C. and Joyce E., 1979, Dissociation between the presynaptic dopamine-sensitive adenylate cyclase and [3H]-spiperone binding sites in rat substantia nigra, Brain Res., 167: 355.PubMedCrossRefGoogle Scholar
  65. Scatchard, G., 1949, The attraction of proteins for small molecules, Ann. N.Y. Acad. Sci., 51: 660.CrossRefGoogle Scholar
  66. Schmidt, M.J. and Hill, L.E., 1977, fects of ergots on adenylate cyclase activity in the corpus striatum and pituitary. Life Sci.,20: 789.PubMedCrossRefGoogle Scholar
  67. Schulz, D.W. and Mailman, R.B., 1984, An improved, automated adenylate cyclase assay utilizing preparative HPLC: Effects of phosphodiesterase inhibitors, J. Neurochem., 42: 764.PubMedCrossRefGoogle Scholar
  68. Schulz, D.W., Lewis, M.H., Petitto, J. and Mailman, R.B., 1984a, Ascorbic acid decreases [3H]-dopamine binding in striatum without inhibiting dopamine-sensitive adenylate cyclase, Neurochem. Int., 6: 117.PubMedCrossRefGoogle Scholar
  69. Schulz, D.W., Wyrick, S.D., and Mailman, R.B. 1984b. [3H]- SCH23390 has the characteristics of a dopamine receptor ligand in the rat central nervous system, Eur. J. Pharmacol., 106: 211.PubMedCrossRefGoogle Scholar
  70. Schulz, D.W., Staples, L.J. and Mailman, R.B., 1985a, SCH23390 causes persistent antidopaminergic effects in vivo: evidence in longterm occupation of receptors. Life Sci. 36: 1941.PubMedCrossRefGoogle Scholar
  71. Schulz, D.W., Stanford, E.J., Wyrick, S.B. and Mailman, R.B. 1985b. Binding of [3H]SCH23390 in rat brain: regional distribution, inhibition by competing ligands, and effects of assay conditions suggest interactions at D1-like dopamine receptors. J. Neurochem., 45: 1601.PubMedCrossRefGoogle Scholar
  72. Schwarcz, R., Creese, I. and Coyle, J.T., 1978, Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum, Nature 271: 766.PubMedCrossRefGoogle Scholar
  73. Seeman, P., Chau-Wong, M., Tedesco, J., and Wong, K., 1975, Brain receptors for antipsychotic drugs and dopamine: Direct binding assays. Proc. Nat. Acad. Sci. (U.S.A.), 72: 4376.CrossRefGoogle Scholar
  74. Seiler, M.P. and Markstein, R., 1984, Further characterization of structural requirements for agonists at the striatal dopamine D2 receptor and a comparison with those at the striatal dopamine D1 receptor. Studies with a series of monohydroxyaminotetralins on acetylcholine release from rat striatum, Mol. Pharmacol., 26: 452.PubMedGoogle Scholar
  75. Smith, M.M. and Harden, T.K., 1984, Modification of receptor-mediated inhibition of adenylate cyclase in NG108–15 neuroblastoma x glioma cells by N-ethylmaleimide, J. Pharmacol. Exp. Ther., 228: 425.PubMedGoogle Scholar
  76. Snyder, S.H., 1976, The dopamine hypothesis of schizophrenia: focus on the dopamine receptor, Amer. J. Psychiatry, 133: 197.Google Scholar
  77. Snyder, S.H., Creese, I. and Burt, D.R., 1975, The brain’s dopamine receptor: Labeling with [3H]-dopamine and [3H]-haloperidol, Psychopharmacol. Commun., 1:663.PubMedGoogle Scholar
  78. Snyder, S.H., Katims, J.J., Annau, Z., Bruns, R.F. and Daly, J.W., 1981, Adenosine receptors and behavioral action of methylxanthines, Proc. Natl. Acad. Sci. (U.S.), 78: 3260.CrossRefGoogle Scholar
  79. Trabucchi, M., Spano, P.F., Tonon, G.C., and Frattola, L., 1976, Effects of bromocriptine on central dopaminergic receptors, Life Sci., 19: 225.PubMedCrossRefGoogle Scholar
  80. Ungerstedt, U. and Arbuthnott, G.W., 1970, Quantitative recording of rotational behavior of rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system, Brain Res., 24: 485.PubMedCrossRefGoogle Scholar
  81. Vance, M.A. and Blumberg, J.B., 1983, Effect of catecholamines on locomotor activity and cyclic AMP in nucleus accumbens in rats, J. Pharm. Pharmacol., 35: 402.PubMedCrossRefGoogle Scholar
  82. Widerlov, E., Kilts, C.D., Mailman, R.B., Nemeroff, C.B., Prange, A.J. and Breese, G.R., 1982, Increase in dopamine metabolites in rat brain by neurotensin, J. Pharmacol. Exp. Ther., 223: 1.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Richard B. Mailman
    • 1
    • 2
    • 3
  • David W. Schulz
    • 1
    • 3
  • Clinton D. Kilts
    • 5
  • Mark H. Lewis
    • 1
  • Hans Rollema
    • 6
  • Steven Wyrick
    • 4
  1. 1.Biological Sciences Research CenterUniversity of North Carolina School of MedicineChapel HillUSA
  2. 2.Departments of Psychiatry and PharmacologyUniversity of North Carolina School of MedicineChapel HillUSA
  3. 3.Neurobiology CurriculumUniversity of North Carolina School of MedicineChapel HillUSA
  4. 4.Department of Medicinal ChemistryUniversity of North Carolina School of MedicineChapel HillUSA
  5. 5.Department of PsychiatryDuke University Medical CenterDurhamUSA
  6. 6.ReiksuniversiteitGroningenNetherlands

Personalised recommendations