Electrophysiological Assessment of Dopamine Receptor Subtypes

  • T. Celeste Napier
  • George R. Breese
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 204)


Scientific approaches to the characterization of brain systems can be globally classified into those approaches which demonstrate the presence of a phenomenon, and those which attribute a function to the described phenomenon. These approaches are interdependent and both are essential for understanding the whole organism. Previous chapters in this volume provide reviews of the presence and distribution of subtypes of central dopamine (DA) binding sites. Behavioral function has now been correlated with each of these proposed receptor groups. The present review is concerned with electrophysiological consequences of DA receptor activation. Electrophysiology provides assessment of function at the single cell level and allows for discrimination among neuronal systems. Therefore, electrophysiology serves as a bridge between the identification and anatomical location of a receptor, and the characterization of whole animal behaviors resulting from receptor activation.


Dopamine Receptor Nucleus Accumbens Adenylate Cyclase Globus Pallidus Striatal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, A. Masashi, S. and Takaori, S., 1984, Microiontophoretic studies of the dopaminergic inhibition from the ventral tegmental area to the nucleus accumbens neurons, J. Pharm. Exp. Therap., 229:859–864.Google Scholar
  2. Anden, N.-E., Dahlstrom, A., Fuxe, K., Olsson, K., and Ungerstedt, U., 1966, Ascending monoamine neurons to the telecephalon and diencephalon, Acta Physiol. Scand., 67:313–326.CrossRefGoogle Scholar
  3. Arbuthnott, G.W., Brown, J.R., Kapoor, V., and Whale, D., 1984, Presynaptic actions and dopamine in the neostriatum, in: “The Basal Ganglia, Structure and Function,” J.S. McKenzie, R.E. Kemm and L.N. Wilcock, eds., pp. 173–203, Plenum Press, New York.CrossRefGoogle Scholar
  4. Arnt, J., and Hytell, J., 1984, Differential inhibition by dopamine D-1 and D-2 antagonists of circling behavior induced by dopamine agonists in rats with unilateral 6-hydroxydopamine lesions, Eur.J. Pharmacol., 102:349–354.PubMedCrossRefGoogle Scholar
  5. Baring, M.D., Walters, J.R., and Eng, N., 1980, Action of systemic apomorphine on dopamine cell firing after neonatal kainic acid lesion. Brain Res., 181: 214–218.PubMedCrossRefGoogle Scholar
  6. Beart, P.M., and McDonald, D., 1982, Neurochemical studies of the mesolimbic dopaminergic pathway: 3H-spiperone labels two binding sites in homogenates of the nucleus accumbens of rat brain, J. Neurochem., 39: 1452–1460.PubMedCrossRefGoogle Scholar
  7. Berger, B., Thierry, A.M., Tassin, J.P., and Moyne, M.A., 1976, Dopaminergic innervation of the rat prefrontal cortex: A fluorescence histochemical study, Brain Res., 106:133–145.PubMedCrossRefGoogle Scholar
  8. Bergstrom, D.A., Bromley, S.D., and Walters, J.R., 1982, Apomorphine increases the activity of rat globus pallidus neurons, Brain Res., 238:266–271.PubMedCrossRefGoogle Scholar
  9. Bergstrom, D.A., and Walters, J.R., 1981, Neuronal responses of the globus pallidus to systemic administration of d-amphetamine: Investigation of the involvement of dopamine, norephinephrine, and serotonin, J. Neurosci., 1:292–299.PubMedGoogle Scholar
  10. Bergstrom, D.A., and Walters, J.R., 1984, Dopamine attenuates the effects of GABA on single unit activity in the globus pallidus, Brain Res., 310:23–33.PubMedCrossRefGoogle Scholar
  11. Bevan, P., Bradshaw, C.M., Pun, R.Y.K., Slater, N.T., and Szabadi, E., 1978, Responses of single cortical neurones to noradrenaline and dopamine, Neuropharmacology, 17:611–617.PubMedCrossRefGoogle Scholar
  12. Bloom, F.A., Costa, E., and Salmoiraghi, G.C., 1965, Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis, J. Pharmacol. Exp. Therap.,Google Scholar
  13. Bockaert, J., Premont, J., Glowinski, J., Tassin, J.P., and Thierry, A.M., 1977, Topographical distribution and characteristics of dopamine and B-adrenergic sensitive adenylate cyclase in the rat frontal cerebral cortex, striatum and substantia nigra. Advan. Biochem. Psychopharmacol., 16: 29–37.Google Scholar
  14. Bottger, G., and Schmidt, J., 1980, Der einflub von striatumreizung and mikroiontophoretisch appliziertem dopamin und azetylcholin auf die neuronale aktivitat im globus pallidus, Acta biol. med. germ., 39:123–131.PubMedGoogle Scholar
  15. Bradshaw, C.M., Pun, R.Y.K., Slater, N.T., Stoker, M.J., and Szabadi, E., 1983, Differential antagonistic effects of haloperidol on excitatory responses of cortical neurones to phenylephrine, noradrenaline and dopamine. Neuropharmac., 22:945–952.CrossRefGoogle Scholar
  16. Bradshaw, C.M., Sheridan, R.D. and Szabadi, E., 1985, Excitatory neuronal responses to dopamine in the cerebral cortex: Involvement of D2 but not D1 dopamine receptors, Br. J. Pharmac., 86:483–490.CrossRefGoogle Scholar
  17. Brown, J.R., and Arbuthnott, G.W., 1983, The electrophysiology of dopamine (D2) receptors: A study of the actions of dopamine on corticostriatal transmission, Neurosci., 10:349–355.CrossRefGoogle Scholar
  18. Bunney, B.S., and Aghajanian, G.K., 1976, d-Amphetamine-induced inhibition of central dopaminergic neurons: Mediation by a striato-nigral feedback pathway, Science, 192:391–393.PubMedCrossRefGoogle Scholar
  19. Bunney, B.S., and Aghajanian, G.K., 1976, Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: Pharmacological differentiation using microiontophoretic techniques, Life Sci., 19:1783–1792.PubMedCrossRefGoogle Scholar
  20. Bunney, B.S., Aghajanian, G.K., and Roth, R.H., 1973a, Comparison of effects of L-DOPA, amphetamine and apomorphine on firing rate of rat dopaminergic neurons. Nature 245: 123–125.Google Scholar
  21. Bunney, B.S., Walters, J.R., Roth, R.H., and Aghajanian, G.K., 1973b, Dopaminergic neurons: Effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol. Exp. Ther., 185: 560–571.PubMedGoogle Scholar
  22. Burt, D.R., Creese, I., and Snyder, S.H., 1976, Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes, Mol. Pharmacol., 12:800–812.PubMedGoogle Scholar
  23. Chiodo, L.A., and Bunney, B.S., 1984, Effects of dopamine antagonists on midbrain dopamine cell activity, in: “Catecholamines: Neuropharmacology and Central Nervous System-Theoretical Aspects,” Vol. 8A, Neurology and Neurobiology, E. Usdin, A. Carlsson, A. Dahlstrom and J. Engel, eds., pp. 369–391, Alan R. Liss, Inc. New York.Google Scholar
  24. Christensen, A.V., Arnt, J., Hyttel, J., Larsen, J.J., and Sverdsen, O., 1984, Pharmacological effects of a specific dopamine D-1 antagonist SCH-23390 in comparison with neuroleptics, Life Sci., 334:1529–1540.CrossRefGoogle Scholar
  25. Clark, D., Hjorth, S., and Carlsson, A., 1985a, Dopamine-receptor agonists: Mechanisms underlying autoreceptor selectivity I. Review of the evidence, J. Neural Trans., 62:1–52.CrossRefGoogle Scholar
  26. Clark, D., Hjorth, S., and Carlsson, A., 1985b, Dopamine-receptor agonists: Mechanisms underlying autoreceptor selectivity II. Theoretical considerations, J. Neural Trans., 62:171–207.CrossRefGoogle Scholar
  27. Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.L., and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs. Proc. Nat. Acad. Sci., 71:113–117.CrossRefGoogle Scholar
  28. Creese, I., Morrow, A.L., Leff, S.E., Sibley, D.R., and Hamblin, M.W., 1982, Dopamine receptors in the central nervous system, Inter. Rev. Neurobiol., 23: 255–301.CrossRefGoogle Scholar
  29. Dawson, T.M., Gehlert, D.R., Yamamura, H.I., Barnett, A., and Wamsley, J.K., 1985,D-1 dopamine receptors in the rat brain: Autoradiographic localization using 3H-SCH 23390, Eur. J. Pharmacol., 108: 323–325.PubMedCrossRefGoogle Scholar
  30. DeFrance, J.F. and Yoshihara, H., 1975, Fibria input to the nucleus accumbens septi, Brain Res., 90:159–163.PubMedCrossRefGoogle Scholar
  31. De Keyser, J., De Backer, J-P, Convents, A., Ebinger, G. and Vauguelin, G., 1985, D2 dopamine receptors in calf globus pallidus: Agonist high- and low-affinity sites not regulated by guanine nucleotide, J. Neurochem., 977–979.Google Scholar
  32. Fields, J.Z., Reisine, T.D., and Yamamura, H.I., 1977, Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H]spiroperidol, Brain Res., 136:578–584.PubMedCrossRefGoogle Scholar
  33. Filion, M., 1979, Effects of interruption of the nigrostriatal pathway and of dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey, Brain Res., 178:425–441.PubMedCrossRefGoogle Scholar
  34. Frey, J.M. and Huffman, R.D., 1985, Effects of enkephalin and morphine on rat globus pallidus neurons, Brain Res. Bul., 14:251–259.CrossRefGoogle Scholar
  35. Fuxe, K., 1965, Distribution of the monoamine nerve terminals in central nervous system, Acta Physiol. Scand., 64(Suppl.247):39–85.Google Scholar
  36. Gale, K., Guidotti, A., and Costa, E., 1977, Dopamine-sensitive adenylate cyclase location in substantia nigra, Science, 195: 503–505.PubMedCrossRefGoogle Scholar
  37. Geffen, I.B., Jessel, T.M., Cuello, A.C., and Iversen, I.I., 1976, Release of dopamine from dendrites in rat substantia nigra, Nature, 260:258–260.PubMedCrossRefGoogle Scholar
  38. Gershanik, O., Heikkila, R.E., and Duvoisin, R.C., 1983, Behavioral correlations of dopamine receptor activation, Neurology, 33:1489–1492.PubMedCrossRefGoogle Scholar
  39. Govoni, S., Olgiati, V.R., Trabucchi, M., Garau, L., Stefanini, E., and Spano, P.F., 1978, [3H]haloperidol and [3H]spiroperidol receptor binding after striatal injection of kainic acid, Neurosci. Lett., 8:207–210.PubMedCrossRefGoogle Scholar
  40. Guyenet, P.G. and Aghajanian, G.K., 1978, Antidromic identification of dopaminergic and other outpupt neurons of the rat substantia nigra, Brain Res., 150: 69–84.PubMedCrossRefGoogle Scholar
  41. Herrera-Marschitz, M., and Ungerstedt, U., 1984, Evidence that striatal efferents relate to different dopamine receptors, Brain Res., 323: 269–278.PubMedCrossRefGoogle Scholar
  42. Hokfelt, T., Halasz, N., Ljungdahl, A., Johansson, O., Goldstein, M., and Park, D., 1975, Histochemical support for a dopaminergic mechanism in the dendrites of certain periglomerular cells in the rat olfactory blub, Neurosci. Lett., 1:85–90.PubMedCrossRefGoogle Scholar
  43. Horn, A.S., Cuello, A.C., and Miller, R.J., 1974, Dopamine in the mesolimbic system of the rat brain: Endogenous levels and the effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity, J. Neurochem., 22:265–270.PubMedCrossRefGoogle Scholar
  44. Jackson, E.A., and Kelly, P.H., 1983, Role of nigral dopamine in amphetamine-induced locomotor activity, Brain Res., 278:366–369.PubMedCrossRefGoogle Scholar
  45. Jastrow, T.R., Richfield, E., and Gnegy, M.E., 1984, Quantitative autoradiography of 3H-sulpiride binding sites in rat brain, Neurosci. Lett., 51:47–53.PubMedCrossRefGoogle Scholar
  46. Kebabian, J.W. & Calne, D.B., 1979, Multiple receptors for dopamine, Nature, 227:93–96CrossRefGoogle Scholar
  47. Lindvall, O., and Bjorklund, A., 1979, Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway, Brain Res., 172: 169–173.PubMedCrossRefGoogle Scholar
  48. Lindvall, O., and Bjorklund, A., 1981, Neuroanatomy of central dopamine pathways: Review of recent progress, in: “Advances in Dopamine Research”, M. Kohsaka, T. Shohmori, Y. Tsukada and G.N. Woodruff, eds., pp. 297–311, Pergamon Press, NY.Google Scholar
  49. Lindvall, O., Bjoklund, A., and Divac, I., 1978, Organization of catecholamine neurons projecting to the frontal cortex in the rat, Brain Res., 142:1–24.PubMedCrossRefGoogle Scholar
  50. Lorez, H.P., and Burkard, W.P., 1979a, Absence of dopamine sensitive adenylate cyclase in the AlO region: The origin of mesolimbic dopamine neurons, Experientia (Basel), 35:744–745.PubMedCrossRefGoogle Scholar
  51. Lorez, H.P., and Burkard, W.P., 1979b, Specific binding of 3H-spiroperidol in the absence of dopamine-sensitive adenylate cyclase in the A10 cell region of the rat brain, Experientia (Basel), 35:938.CrossRefGoogle Scholar
  52. Mereu, G., Collu, M. Ongini, E., Biggio, G., and Gessa, G.L., 1985, SCH 23390, a selective dopamine D1 antagonist, activates dopamine neurons but fails to prevent their inhibition by apomorphine, Eur. J. Pharmacol., 111:393–396.PubMedCrossRefGoogle Scholar
  53. Mitchell, P.R., and Doggett, N.S., 1980, Modulation of striatal [3H]-glutamic acid release by dopaminergic drugs, Life Sci., 26:2073–2081.PubMedCrossRefGoogle Scholar
  54. Murrin, L.C., Gale, K., and Kuhar, M.J., 1979, Autoradiographic localization of neuroleptic and dopamine receptors in the caudate-putamen and substantia nigra: Effects of lesions, Eur. J. Pharmacol., 60:229–235.PubMedCrossRefGoogle Scholar
  55. Nagy, J.I., Carter, D.A., and Fibiger, H.C., 1978, Anterior striatal projections to the globus pallidus entopeduncular nucleus and substantia nigra in the rat: The GABA connection, Brain Res., 158:15–29.PubMedCrossRefGoogle Scholar
  56. Napier, T.C., and Breese, G.R., 1984, Dopamine functions of the rodent globus pallidus: Effects of neurotensin and neuroleptics, Neurosci. Abstr., 10:412.Google Scholar
  57. Napier, T.C. and Breese, G.R., 1986, unpublished results.Google Scholar
  58. Napier, T.C, Gay, D.A., Hulebak, K.L., and Breese, G.R., 1985, Behavioral an biochemical assessment of time related changes in globus pallidus and striatal dopamine induced by intranigrally administered neurotensin, Peptides, 6:1057–1068.PubMedCrossRefGoogle Scholar
  59. Napier, T.C, Givens, B.S., and Breese, G.R., 1986b, unpublished results.Google Scholar
  60. Napier, T.C., Givens, B.S., Schulz, D.W., Bunney, B.S., Breese, G.R., and Mailman, R.B., 1986c, SCH23390 effects on apomorphine-induced responses of nigral dopaminergic neurons, J. Pharmacol. Exp. Therap., in press.Google Scholar
  61. Napier, T.C, Pirch, J.H., and Peterson, S.L., 1983a, Spontaneous unit activity in the globus pallidus following cumulative injections of morphine in phenobarbital- or chloral hydrate-anesthetized rats, Neuropharmacology, 22:165–171.PubMedCrossRefGoogle Scholar
  62. Napier, T.C, Pirch, J.H., and Strahlendorf, H.K., 1983b, Naloxone antagonizes striatally-induced suppression of globus pallidus unit activity, Neuroscience, 9:53–59.PubMedCrossRefGoogle Scholar
  63. Napier, T.C, Simson, P.E., and Breese, G.R., 1985, Systematically administered apomorphine increases and microiontophoretically applied dopamine decreases neuronal activity in rodent globus pallidus, Fed. Proc. 5:1387.Google Scholar
  64. Nicoullon, A., Cheramy, A., and Glowinski, J., 1977, Release of dopamine in vivo from rat substantia nigra, Nature (London), 266:375–377.CrossRefGoogle Scholar
  65. Norcross, K., and Spehlmann, R., 1978, A quantitative analysis of the excitatory and depressant effects of dopamine on the firing of caudatal neurons: Electrophysiological support for the existence of two distinct dopamine-sensitive receptors, Brain Res., 156:168–174.PubMedCrossRefGoogle Scholar
  66. Ohno, Y., Sasa, M., and Takaori, S., 1985, Dopamine D-2 receptor-mediated excitation of caudate nucleus neurons from the substantia nigra, Life Sci., 37:1515–1521.PubMedCrossRefGoogle Scholar
  67. Onali, P., Mereu, G., Olianas, M.C, Bunse, B., Rossetti, Z., and Gessa, G.L., 1985, SCH 23390, a selective D1 dopamine receptor blocker, enhances the firing rate of nigral dopaminergic neurons but fails to activate striatal tyrosine hydroxylase, Brain Res., 340:1–7.PubMedCrossRefGoogle Scholar
  68. Ouimet, C.C., Miller, P.E., Hemmings, Jr., H.C, Walaas, S.I., and Greengard, P., 1984, DARPP-32, a dopamine- and adenosine 3’: 5’-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization, J. Neurosci., 4:111–124.PubMedGoogle Scholar
  69. Phillipson, O.T., Emson, P.C. Horn, A.S., and Jessell, T., 1977, Evidence concerning the anatomical location of the dopamine stimulated adenylate cyclase in the substantia nigra, Brain Res., 136:45–58.PubMedCrossRefGoogle Scholar
  70. Phillis, J.W., 1984, Microiontophoresis of the cortical biogenic amines, in: “Monoamine Innervation of Cerebral Cortex”, L. Descarries, P.R. Reader and H.H. Jasper, eds., pp. 175–194, Alan R. Liss, Inc., New York.Google Scholar
  71. Pijnenburg, A.J.J., Honig, W.M.M. and Van Rossum, J.M., 1975, Effects of antagonists upon locomotor stimulation induced by injection of dopamine and noradrenaline into the nucleus accumbens of nialamide-pretreated rats, Psychopharmacol., 41:175–180.CrossRefGoogle Scholar
  72. Pickel, N.M., Joh, T.H., Field, P.M., Becker, C.F., and Reis, D.J., 1975, Cellular localization of tyrosine hydroxylase by immunohistochemistry, J. Histochem. Cytochem., 23:1–12.PubMedCrossRefGoogle Scholar
  73. Premont, J., Thierry, A.M., Tassin, J.P., Glowinski, J., Blanc, G., and Bockaert, J., 1976, Is the dopamine sensitive adenylate cyclase in the substantia nigra coupled with “autoreceptors”?, FASEB Lett., 68:99–104.CrossRefGoogle Scholar
  74. Quik, M., Emson, P.C., and Joyce, E., 1979, Dissociation between the presynaptic dopamine-sensitive adenylate cyclase and 3H-spiperone binding sites in rat substantia nigra, Brain Res., 167:355–365.PubMedCrossRefGoogle Scholar
  75. Roth, R.H., 1981, Dopamine autoreceptors: Pharmacology, function and comparison with postsynaptic dopamine receptors, Comm. Psychopharmacol., 3:429–445.Google Scholar
  76. Sailer, C.F., and Salama, A.I., 1985, Dopamine receptor subtypes: In vivo biochemical evidence for functional interaction, Eur. J. Pharmacol., 109:297–300.CrossRefGoogle Scholar
  77. Scarnati, E., Forchetti, C., Ciancarelli, G., Pacitti, C., and Agnoli, A., 1980, Responsiveness of nigral neurons to the stimulation of striatal dopaminergic receptors in the rat, Life Sci., 26:1203–1209.PubMedCrossRefGoogle Scholar
  78. Schulz, D. W., Stanford, E.J., Wyrick S.W, and Mailman, R.B., 1985, Binding of [3H]SCH23390 in rat brain: Regional distribution and effects of assay conditions and GTP suggest interactions at a D1-like dopamine receptor, J. Neurochem., 45: 1601–1611.PubMedCrossRefGoogle Scholar
  79. Schwarcz, R., Creese, I., Coyle, J.T., and Snyder, S.H., 1978, Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum, Nature , 271:766–768.PubMedCrossRefGoogle Scholar
  80. Seeman, P., 1981, Brain dopamine receptors, Pharmac. Rev., 32:229–313.Google Scholar
  81. Siggins, G.R., Hoffer, B.J., and Ungerstedt, U., 1974, Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurones, Life Sci., 15:779–792.PubMedCrossRefGoogle Scholar
  82. Skirboll, L.R., Grace, A.A., and Bunney, B.S., 1979, Dopamine auto- and postsynaptic receptors: Electophysiological evidence for differential sensitivity to dopamine agonists, Science, 206:80–82.PubMedCrossRefGoogle Scholar
  83. Skirboll, L.R., Grace, A.A., Hommer, D.W., Rehfeld, J., Goldstein, M., Hokfelt, T., and Bunney, B.S., 1981, Peptide-monoamine coexistence: Studies of the actions of the cholecystokinin-like peptide on the electrical activity of midbrain dopamine neurons, Neuronscience, 6:2111–2124.CrossRefGoogle Scholar
  84. Staines, W.A., Nagy, J.I., Vincent, S.R. and Fibiger, H.C, 1980, Neurotransmitters contained in the efferents of the striatum, Brain Res., 194:391–402.PubMedCrossRefGoogle Scholar
  85. Stoof, J.C, 1983, Dopamine receptors in the neostriatum: Biochemical and physiological studies, in: “Dopamine Receptors,” C Kaiser and J.W. Kebabian, eds., pp. 117–145, American Chemical Society Symposium Series No. 224, Washington D.CCrossRefGoogle Scholar
  86. Stoof, J.C, and Kababian, J.W., 1981, Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum, Nature 294:366–368.PubMedCrossRefGoogle Scholar
  87. Tassin, J.P., Simon, H., Herve, D., Blanc, G., LeMoal, M., Glowinski, J., and Bockaert, J., 1982, Non-dopaminergic fibres may regulate dopamine-sensitive adenylate cyclase in the prefrontal cortex and nucleus accumbens. Nature, 295:696–698.PubMedCrossRefGoogle Scholar
  88. Thierry, A.M., LeDouarin, C., Ferron, A. and Glowinski, J., 1984a, Influence of the mesocortical DA system of the activity of prefrontal cortical neurons in the rat, Clin. Neuropharmacol., 7(suppl.1):76–77.Google Scholar
  89. Thierry, A.M., Tassin, J.P., and Glowinski, J., 1984b, Biochemical and electrophysiological studies of the mesocortical dopamine system, in: “Monoamine Innervation of Cerebral Cortex,” Vol.10 Neurology and Neurobiology, L. Descarries, T.R. Reader and H.H. Jasper, eds., pp. 233–261, Liss, New York.Google Scholar
  90. Ungerstedt, U., 1971, Stereotaxic mapping of the monoamine pathways in the rat brain., Acta Physiol. Scand., 367:1–48.Google Scholar
  91. Walters, J.R., Berstrom, D.A., Bromley, S.D., Waszczak, B.L., and Jackson, D.M., 1982, Neurophysiological effects of dopamine agonists in the substantia nigra and globus pallidus, in: “Dopamine Receptor Agonists,” A. Carlsson and J.L.G. Nilsson, eds., pp. 186–199, Swedish Pharmaceutical Press, Stockholm.Google Scholar
  92. Walters, J.R., Carlson, J.H., Bergstrom, D.A., and Waszczak, B.L., 1984, Effects of SCH 23390-induced blockade of D-1 dopamine (DA) receptors on single unit activity in substantia nigra and globus pallidus, Neurosci. Abstr. 10:412.Google Scholar
  93. Wang, R.Y., 1981a, Dopaminergic neurons in the rat ventral tegmental area. I. Identification and characterization, Brain Res. Rev., 3: 123–140.CrossRefGoogle Scholar
  94. Wang, R.Y., 1981b, Dopaminergic neurons in the rat ventral tegmental area. II. Evidence for autoregulation, Brain Res. Rev., 3:141–152.CrossRefGoogle Scholar
  95. Wang, R.Y., White, F.J., and Voigt, M.M., 1984, Effects of dopamine agonists on midbrain dopamine cell activity, in: Catecholamines: Neuropharmacology and Central Nervous System-Theoretical Aspects, eds., Alan R. Liss, Inc., New York, NY, pp.359–367.Google Scholar
  96. Waszczak, B.L., Bergstrom, D.A., and Walters, J.R., 1981, Single unit responses of substantia nigra and globus pallidus neurons to GABA agonist and antagonist drugs, in: “GABA and the Basal Ganglia,” ed., G. DiChiara and G.L. Gessa, pp. 79–94, Raven Press, New York.Google Scholar
  97. White, F.J., and Wang, R.Y., 1984, Pharmacological characterization of dopamine autoreceptors in the rat ventral tegmental area: Microiontophoretic studies, J. Pharmacol. Exp. Ther. 231:275–280.PubMedGoogle Scholar
  98. White, F.J., and Wang, R.Y., 1986, Electophysiological evidence for the existence of bothD-1 and D-2 dopamine receptors in the rat nucleus accumbens, J. Neurosci., 6:274–280.PubMedGoogle Scholar
  99. Woodruff, G.N., McCarthy, P.S., and Walker, R.J., 1976, Studies on the pharmacology of neurons in the nucleus accumbens of the rat, Brain Res., 115:233–242.PubMedCrossRefGoogle Scholar
  100. York, D.H., 1970, Possible dopaminergic pathway from substantia nigra to putamen, Brain Res., 20:233–249.PubMedCrossRefGoogle Scholar
  101. York, D.H., 1979, The neurophysiology of dopamine receptors, in: “The Neurobiology of Dopamine”, A.S. Horn, J. Korf and B.H.C. Westerink, eds., pp. 395–415, Academic Press, New York.Google Scholar
  102. Yoshida, M., and Kunihiko, O., 1978, Actions of putative neurotransmitters on cat pallidal neurons, in: “Iontophoresis and Transmitter Mechanism in the Mammalian Central Nervous System,” Ryall and Kelly eds., pp.71–74, Elsevier; North-Holland Biomedical Press.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • T. Celeste Napier
    • 1
  • George R. Breese
    • 2
  1. 1.Neuropharmacology, Biological Sciences Research Center, School of MedicineUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Departments of Psychiatry and Pharmacology, Biological Sciences Research Center, School of MedicineUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations