Cell Line and Growth Site as Relevant Parameters Governing Tumor Tissue Oxygenation

  • P. Vaupel
  • W. Mueller-Klieser
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)


Experimental rodent tumors commonly used in radiobiology exhibit a large inter-individual variability in the oxygenation status [1,2] and in the hypoxic cell fraction [3,4]. Paramount factors contributing to this variability may be tumor growth stage or tumor size [5], the cell line used, the growth site, the use of anaesthesia and certain tumor-host interactions (e.g. tumor-induced anemia). Concerning the basic pathogenetic mechanisms through which the above mentioned parameters can modulate tumor tissue oxygenation, variations of nutritive blood flow, inherent characteristics of the cell line (e.g. respiration rate or tumor growth rate), and finally changes in the O2 transport capacity of the arterial blood have to be considered.


Oxygenation Status Implantation Site Growth Site Spinner Flask Tumor Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vaupel, P., 1977, Hypoxia in neoplastic tissue, Microvasc. Res., 13: 399–408.PubMedCrossRefGoogle Scholar
  2. 2.
    Vaupel, P., Frinak, S., Bicher, H.I., 1981, Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma, Cancer Res., 41: 2008–2013.PubMedGoogle Scholar
  3. 3.
    Moulder, J.E., Rockwell, S., 1984, Hypoxic fractions of solid tumors: Experimental techniques, methods of analysis, and a survey of existing data, Int. J. Radiat. Oncol. Biol. Phys., 10: 695–712CrossRefGoogle Scholar
  4. 4.
    Rockwell, S., Moulder, J.E., Martin, D.F., 1984, Tumor-totumor variability in the hypoxic fractions of experimental rodent tumors, Radiother. Oncol., 2: 57–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Manz, R., Otte, J., Thews, G., Vaupel, P., 1983, Relationship between size and oxygenation status of malignant tumors, Adv. exp. Med. Biol., 159: 391–398.PubMedGoogle Scholar
  6. 6.
    Vaupel, P., Manz, R., Mueller-Klieser, W., and Grunewald, W.A., 1979, Intracapillary HbO saturation in malignant tumors during normoxia and hyperoxia, Microvasc. Res., 17: 181–191.PubMedCrossRefGoogle Scholar
  7. 7.
    Bork, R., Vaupel, P., and Thews, G., 1975, Atemgas-pH-Nomogramme für das Rattenblut bei 37’C, Anaesthesist, 24: 84–90.PubMedGoogle Scholar
  8. 8.
    Vaupel, P., 1979, Oxygen supply to malignant tumors, in: “Tumor blood circulation - Angiogenesis, vascular morphology and blood flow of experimental and human tumors”, H.I. Peterson, ed., CRC Press, Boca Raton.Google Scholar
  9. 9.
    Mueller-Klieser, W., and Vaupel, P., 1983, Tumor oxygenation under normobaric and hyperbaric conditions, Brit. J. Radiol., 56: 559–564.PubMedCrossRefGoogle Scholar
  10. 10.
    Vaupel, P., Otte, J., and Manz, R., 1982, Oxygenation of malignant tumors after localized microwave hyperthermia, Radiat. Environment. Biophys., 20: 289–300.CrossRefGoogle Scholar
  11. 11.
    Mueller-Klieser, W., Vaupel, P., Manz, R., and Grunewald, W.A., 1980, Intracapillary oxyhemoglobin saturation in malignant tumours with central or peripheral blood supply, Europ. J. Cancer, 16: 195–201CrossRefGoogle Scholar
  12. 12.
    Vaupel, P., 1985, Durchblutung, Oxygenierung and pH-Verteilung in malignen Tumoren: Biologische and therapeutische Aspekte, in: “Physiologie aktuell”, D.W. Lübbers and B. Bomm, eds., Fischer, Stuttgart.Google Scholar
  13. 13.
    Wendling, P., Manz, R., Thews, G., and Vaupel, P., 1984, Inhomogeneous oxygenation of rectal carcinomas in humans -A critical parameter for perioperative irradiation? Adv. exp. Med. Biol., 180: 293–300PubMedGoogle Scholar
  14. 14.
    Mueller-Klieser, W., Vaupel, P., Manz, R., and Schmidseder, R., 1981, Intracapillary oxyhemoglobin saturation of malignant tumors in humans, Int. J. Radiat. Oncol. Biol. Phys., 7: 1397–1404PubMedCrossRefGoogle Scholar
  15. 15.
    Vaupel, P., Mueller-Klieser, W., Manz, R., Wendling, P., Strube, N.D., and Schmidseder, R., 1983, Heterogeneous oxygenation of malignant tumors in humans. Verhdlq. Dt. Krebsges., 4: 153Google Scholar
  16. 16.
    Vogel, A.W., 1965, Intratumoral vascular changes with increased size of a mammary adenocarcinoma. New method and results. J. Natl. Cancer Inst., 34: 571–578.PubMedGoogle Scholar
  17. 17.
    Mueller-Klieser, W., 1984, Microelectrode measurements of oxygen tension distributions in multicellular spheroids cultured in spinner flasks, Rec. Res. Cancer Res., 95: 134–149.CrossRefGoogle Scholar
  18. 18.
    Mueller-Klieser, W., 1984, Method for the determination of oxygen consumption rates and diffusion coefficients in multicellular spheroids, Biophys. J., 46: 343–348.PubMedCrossRefGoogle Scholar
  19. 19.
    Vaupel, P., and Gabbert, H., 1985, Evidence for and against a tumor type-specific vascularity, Strahlentherapie.Google Scholar
  20. 20.
    Habighorst, L.V., 1977, Tierexperimentelle Untersuchungen zur Tumorvaskularisation, Radiologe, 17: 111–117PubMedGoogle Scholar
  21. 21.
    Kraus, W., Fiebig, H.H., Schuchhardt, C., Koch, H., and Strecker, E.P., 1983, Mikroangiographische Untersuchungen verschiedener menschlicher Tumoren nach Transplantation auf thymusaplastische Nacktmäuse, Res. Exp. Med. (Berl.), 182: 63–70.CrossRefGoogle Scholar
  22. 22.
    Bassermann, R., 1984, Angiogenesis and vascularisation in metastases, Verh. Dtsch. Ges. Path., 68: 124–139.Google Scholar
  23. 23.
    Edlich, R.F., Borner, J., and Buchin, R.J., 1969, Micro-circulation of tumors - Influence of implantation site on tumor blood flow, Arch. Surq., 98: 233–234.Google Scholar
  24. 24.
    Vaupel, P., 1982, Pathophysiologie der Durchblutung maligner Tumoren, Funktionsanalyse biolog. Systeme, 8: 155–170.Google Scholar
  25. 25.
    Young, S.W., Hollenberg, N.K., and Abrams, H.L., 1979, The influence of implantation site on tumor growth and blood flow, Europ. J. Cancer, 15: 771–777Google Scholar
  26. 26.
    Paskins-Hurlburt, A.J., Hollenberg, N.K., and Abrams, H.L., 1982, Tumor perfusion in relation to the rapid growth phase and necrosis: Studies on the Walker carcinoma in the rat testicle, Microvasc. Res., 24: 15–24.Google Scholar
  27. 27.
    Kallinowski, F., Dave, S., and Vaupel, P., 1985, Blood flow and oxygen consumption of primary and xenotransplanted human mammary carcinomas, in: “The use of rodent tumors in experimental cancer therapy”, R.F. Kallman, ed., Pergamon Press, New York.Google Scholar
  28. 28.
    Jirtle, R.L., Clifton, K.H., and Rankin, J.G., 1978, Measurements of mammary tumor blood flow in unanesthetized rats, J. Natl. Cancer Inst., 60: 881–886.Google Scholar
  29. 29.
    Jirtle, R.L., 1981, Blood flow to lymphatic metastases in conscious rats, Europ. J. Cancer, 17: 53–60.Google Scholar
  30. 30.
    Hill, S.A., and Denekamp, J., 1982, Site dependent response of tumours to combined heat and radiation, Brit. J. Radiol., 55: 905–912.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. Vaupel
    • 1
  • W. Mueller-Klieser
    • 1
  1. 1.Department of Applied PhysiologyUniversity of MainzMainzGermany

Personalised recommendations