The Influence of Hemoglobin Level on Radiobiological Hypoxia in Tumors

  • David G. Hirst
  • J. Martin Brown
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)


There is little doubt that the success of radiotherapy is limited in some tumor sites by the presence of radioresistant hypoxic cells (Bush et al., 1978). Many strategies have been tested in an attempt to sensitize these cells including the administration of oxygen at high pressures (Churchill-Davidson, 1955; Watson et al., 1978), hydrogen peroxide infusions (Hollcroft et al., 1951; Balla et al., 1968) red blood cell transfusions (Bush et al., 1978) and the use of chemical radiosensitizers of several types (see review by Stratford et al., 1983). It has also been shown clearly that anemic cancer patients respond poorly to radiotherapy (Bush et al., 1978) and yet transfusion with red blood cells has not been universally effective in reversing this effect (Dische et al., 1983).


Hyperbaric Oxygen Hypoxic Cell Hypoxic Fraction Acute Anemia Tumor Radiosensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balla, G. A., Mallams, J. T., and Finney, J. W., 1968, The use of intraarterial hydrogen peroxide as an adjunct to external irradiation therapy in the treatment of 190 cases of advanced malignant diseases in humans, in: “Toxicity of Anesthetics,” B. R. Fink, ed., Williams and Wilkins Co., 230–240.Google Scholar
  2. Bush, R. S., Jenkin, R. D. T., Allt, W. E. C., Beale, F. A., Bean, H., Dembo, A. J., and Pringle, J. F., 1978, Definitive evidence for hypoxic cells influencing cure in cancer therapy, Br. J. Cancer, 37, Suppl. III: 302–306.Google Scholar
  3. Chapman, J. D., Franko, A. J., and Sharplin, J., 1981, A marker for hypoxic cells in tumours with potential clinical applicability, Br. J. Cancer, 43: 546–550.PubMedCrossRefGoogle Scholar
  4. Churchill-Davidson, I., Sanger, C., and Thomlinson, R. H., 1955, High pressure oxygen and radiotherapy, The Lancet, ii: 1091.Google Scholar
  5. Dische, S., Anderson, P. J., Sealy, R., Watson, E. R., 1983, Carcinoma of the cervix--anaemia, radiotherapy and hyperbaric oxygen, Br. J. Radiol., 56: 251–255.Google Scholar
  6. Gullino, P. M., Grantham, F. H., and Courtney, A. H., 1967, Utilization of oxygen by transplanted tumors in vivo., Cancer Res., 27: 1020–1030.PubMedGoogle Scholar
  7. Hewitt, H. B., and Blake, E., 1971, Effect of induced host anemia on the viability and radiosensitivity of murine malignant cells in vivo, Br. J. Cancer, 25: 323–336.Google Scholar
  8. Hirst, D. G., and Denekamp, J., 1979, Tumor cell proliferation in relation to the vasculature, Cell Tissue Kinet., 12: 31–42.PubMedGoogle Scholar
  9. Hirst, D. G., Hazlehurst, J. L., and Brown, J. M., 1984, The effect of alterations in hematocrit on tumour sensitivity to X-rays, Int. J. Radiat. Biol., 46: 345–354.Google Scholar
  10. Hirst, D. G., Hazlehurst, J. L., and Brown, J. M., 1985, Changes in misonidazole binding with hypoxie fraction in mouse tumors, Int. J. Radiat. Oncol. Biol. Phys., 11, 1349–1355.Google Scholar
  11. Hollcroft, J. W., Lorenz, E., and Matthews, M., 1952, Factors modifying the effect of X-irradiation on regression of a transplanted lymphosarcoma, J. Natl. Cancer Inst., 12: 751–763.Google Scholar
  12. Jung, C., Muller-Klieser, W., and Vaupel, P., 1984, Tumor blood flow and 02 availability during hemodilation, Adv. Exper. Med. Biol., 180: 281–291.Google Scholar
  13. Law, M. P., Hirst, D. G., and Brown, J. M., 1981, The enhancing effect of misonidazole on the response of the RIF-1 tumour to cyclophosphamide, Br. J. Cancer, 44: 208–218.Google Scholar
  14. Siemann, D. W., Hill, R. P., Bush, R. S., and Chhabra, P., 1979, The in vivo radiation response of an experimental tumor: The effect of exposing tumor-bearing mice to a reduced oxygen environment prior to but not during irradiation, Int. J. Radiat. Oncol. Biol. Phys., 5: 61–68.Google Scholar
  15. Stratford, I. J., Sheldon, P. W., and Adams, G. E., 1983, Hypoxie cell radiosensitizers, in: “The Biological Basis of Radiotherapy,” Steel, Adams and Peckham, eds., Elsevier Science Publishers D. V., Amsterdam, 211–223.Google Scholar
  16. Tannock, I. F., 1968, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour, Br. J. Cancer, 22: 258.Google Scholar
  17. Twentyman, P. R., Brown, J. M., Gray, J. W., Franko, A. J., Scoles, M. A., and Kallman, R. F., 1980, A new mouse tumor model system (RIF-1) for comparison of end-point studies, J. Nat. Cancer Inst., 64: 595–604.Google Scholar
  18. Vaupel, P., 1974, Atemgaswechsel und glucosestoffwechsel von implantationstumoren (DS-Carcinosarkom) in vivo, in: “Funktionsanalyse biologischer Systeme,” G. Thews, ed., Steiner, Wiesbaden, Vol. 1.Google Scholar
  19. Watson, E. R., Halnan, K. E., Dische, S., Saunders, M. I., Cade, I. S., McEwan, J. B., Wiernik, F., Perrins, D. J. D., and Sutherland, I., 1978, Hyperbaric oxygen and radiotherapy: A Medical Research Council trial in carcinoma of the cervix, Br. J. Radiol., 51: 879–887.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • David G. Hirst
    • 1
  • J. Martin Brown
    • 1
  1. 1.Radiology DepartmentStanford University Medical SchoolStanfordUSA

Personalised recommendations