The Possible Linkage between Tumor Cell Metabolism and Tumor Cell Growth in Multicellular Spheroids

  • F. Degner
  • H. Acker
  • F. Pietruschka
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)


In various tissues and in many tumors the phenomenon of aerobic glycolysis is found and hardly understood37. In addition, in some tissues and in some tumor cell lines oxygen consumption is found to be increasing with increasing tissue Po2 2,15,19. In some tumor cell lines a decrease in glucose concentration in the medium leads to an increase in oxygen consumption16,26,27. In tumor cells all of these three metabolic features can be found, suggesting that tumor cells are different in expressing their metabolism, although they have the same metabolic pathways, since other tissues exhibit also aerobic glycolysis or a Po2-dependent oxygen consumption2.


Oxygen Consumption Aerobic Glycolysis Ehrlich Ascites Tumor Cell Multicellular Spheroid Pyruvate Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Acker, Microenvironmental condition in multicellular spheroids grown under liquid-overlay tissue culture condition, in: “Spheroids in Cancer Research,” Recent Results in Cancer Research, Vol. 95, H. Acker, J. Carlsson, R. Durand, R. M. Sutherland, eds., Springer, Berlin-Heidelberg-New York, 1984, pp. 116–133.CrossRefGoogle Scholar
  2. 2.
    H. Acker, M. Delpiano and F. Degner, The meaning of the Po2 field in the carotid body for the chemoreceptive process, in: “Physiology of the Peripheral Arterial Chemoreceptors,” H. Acker, R. G. O’Regan eds., Elsevier Science Publishers B.V., Amsterdam, 1983, pp. 89–116.Google Scholar
  3. 3.
    H. Acker, G., Holtermann and J. Carlsson, Microelectrode measurements of pH in cellular spheroids, Pflügers Arch. 394: 199 (1982).CrossRefGoogle Scholar
  4. 4.
    S. R. Anderson, J. R. Florini and C. S. Vestling, Rat liver lactate dehydrogenase, J. Biol. Chem. 239:2991–2997 (1964).PubMedGoogle Scholar
  5. 5.
    D. J. Benos, Amiloride: A molecular probe of sodium transport in tissues and cells. Am. J. Physiol. 242:c131-c145 (1982).PubMedGoogle Scholar
  6. 6.
    W. F. Boron, W. C. Mc Cormick and A. Roos, pH regulation in barnacle muscle fibers: Dependence on intracellular and extracellular pH. Am. J. Physiol. 241:C185–C193 (1979).Google Scholar
  7. 7.
    W. B. Busa and R. Nucitelli, Metabolic regulation via intracellular pH. Am. J. Physiol. 246:R409–R438 (1984).PubMedGoogle Scholar
  8. 8.
    J. Carlsson, K. Nilsson, B. Westermark, J. Pantén, C. Sundström, E. Larsson, J. Bergh, S. Pahlmann, L. Busch, and V. P. Collins, Formation and growth of multicellular spheroids of human origin, Int. J. Cancer 31:523–533 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Carlsson and J. M. Yuhas, Liquid-overlay culture of spheroids, in: “Spheroids in Cancer Research,” Recent Results in Cancer Research, Vol. 95, H. Acker, J. Carlsson, R. Durand, R. M. Sutherland, eds., Springer, Berlin-Heidelberg-New York, 1984, pp. 1–23.CrossRefGoogle Scholar
  10. 10.
    H. G. Crabtree, Observation on the carbohydrate metabolism of tumors. Bioch. J. 23:536–545 (1929).Google Scholar
  11. 11.
    B. Endrich, M. Intaglietta, H. S. Reinhold and J. F. Gross, Hemodynamic characteristics in microcirculatory blood channels during early tumor growth, Cancer Res. 39: 17–23 (1979).PubMedGoogle Scholar
  12. 12.
    M. J. Evans, M. Eddy and J. Plummer, A comparative assessment of lactate dehydrogenase isoenzymes, LDHk and LDH5, J. Biol. Chem. 260:306–314 (1985).Google Scholar
  13. 13.
    P. Fafournoux, C. Demigne and C. Remesy, Carrier-mediated uptake of lactate in rat hepatocytes, J. Biol. Chem. 260:292–299 (1985).PubMedGoogle Scholar
  14. 14.
    H. D. Foersterling and H. Kuhn, “Physikalische Chemie in Experimenten,” Verlag Chemie, Weinheim, 1971.Google Scholar
  15. 15.
    J. P. Freyer, E. Tustanoff, A. J. Franko and R. M. Sutherland, In situ oxygen consumption rates of cells in V79 multicellular spheroids during growth, J. Cell Phys. 118:53–61 (1984).CrossRefGoogle Scholar
  16. 16.
    J. P. Freyer and R. M. Sutherland, A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6/R0 spheroids during growth, J. Cell. Phys., 1985, in press.Google Scholar
  17. 17.
    H. Gabbert, R. Wagner and P. Hoehn, The relation between tumor cell proliferation and vascularization in differentiated and undifferentiated colon carcinomas in the rat, Virchows Arch. (Cell Pathol.) 41:119–131 (1982).CrossRefGoogle Scholar
  18. 18.
    W. Gevers, Generation of protons by metabolic processes in heart cells, J. Mol. Cell Cardiol. 9:867–874 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    U. Grossmann, P. Winkler, J. Carlsson and H. Acker, Local variations of oxygen consumption within multicellular spheroids calculated from measured Po2 profiles, in: “Oxygen Transport to Tissue V,” Adv. Exp. Med. & Biol., Vol. 169, D.W. Lübbers, H. Acker, E. Leniger-Follert, T.K. Goldstick, (eds.), Plenum Pess, New York-London, 1984, pp. 719–728.Google Scholar
  20. 20.
    P. Hellung-Larsen and V. Andersen, Studies on Pot-dependent changes in lactate dehydrogenase isoenzyme distribution, FEBS Lett. 18: 163–167 (1970).Google Scholar
  21. 21.
    J. J. Holbrook, A. Liljas, S. J. Steindel and M. G. Rossmann, Lactate dehydrogenase, in: The Enzymes Vol. XI, Part A, P.D. Boyer, ed., New York-San Francisco-London, 1975, pp. 191–292.Google Scholar
  22. 22.
    H. D. Humes, Regulation of intracellular calcium. Semin. Nephrol. 2:117–133 (1984).Google Scholar
  23. 23.
    J. H. Johnson, J. A. Belt, W. P. Dubinsky, A. Zimniak and E. Racker, Inhibition of lactate transport in Ehrlich ascites tumor cells and human erythrocytes by a synthetic anhydride of lactate, Biochemistry 19: 3836–3840 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    S. Lindy and M. Rajasalni, Lactate dehydrogenase isoenzymes of chick embryo: response to variations of ambient oxygen tension, Science 153: 1401–1403 (1966).PubMedCrossRefGoogle Scholar
  25. 25.
    P. Mitchell, Vectorial chemiosmotic processes. Ann. Rev. Biochem. 46:996–1005 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    W. Müller-Klieser, J. P. Freyer and R. M. Sutherland, Evidence for a major role of glucose in controlling development of necrosis in EMT6/R0 multicell tumor spheroids, in: “Oxygen Transport to Tissue IV,” Adv. Exp. Med. & Biol., Vol 69, H. I. Bicher, D. F. Bruley (eds.), Plenum Press, New York, 1983, pp. 487–496.Google Scholar
  27. 27.
    W. Müller-Klieser and R. M. Sutherland, Frequency distribution of oxygen tension in multicell spheroids, in: “Oxygen Transport to Tissue IV,” Adv. Exp. Med. & Biol., Vol 69, H. I. Bicher, D. F. Bruley (eds.), Plenum Press, New York, 1983, pp. 497–508Google Scholar
  28. 28.
    D. Nicholls and K. Akerman, Mitochondrial calcium transport, Biochim. Biophys. Acta 683:55–88 (1983).Google Scholar
  29. 29.
    R. Nuccitelli, D. W. Deamer, “Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions,” Liss, New York, 1982.Google Scholar
  30. 30.
    E. D. Robin, B. J. Murphy and J. Theodore, Coordinate regulation of glycolysis by hypoxia in mammalian cells. J. Cell Physiol. 118:287–290 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    A. Roos and W. F. Boron, Intracellular pH, Physiol. Rev. 61:296–433 (1981).PubMedGoogle Scholar
  32. 32.
    M. J. Siciliano, Isoenzymes and cancer: an overview, Cancer Bull. 32: 43–44 (1980).Google Scholar
  33. 33.
    T. L. Spencer and A. L. Lehninger, L-lactate transport in Ehrlich ascites tumor cells, Bioch. J. 154:405–414 (1976).Google Scholar
  34. 34.
    I. Tannock, The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumor, Br. J. Cancer 22: 258–273 (1968).PubMedCrossRefGoogle Scholar
  35. 35.
    B. Triredi and W. H. Danforth, Effect of pH on the kinetics of frog muscle phosphofructokinase, J. Biol. Chem. 241:4110–4114 (1966).Google Scholar
  36. 36.
    P. Vaupel, Oxygen supply to malignant tumors, in: “Tumor Blood Circulation,” H.-I. Petersen (ed.), CRC Press, Boca Raton, 1979, pp. 143–168.Google Scholar
  37. 37.
    O. Warburg, “Über den Stoffwechsel der Tumoren,” Springer, Berlin, 1936.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • F. Degner
    • 1
  • H. Acker
    • 2
  • F. Pietruschka
    • 2
  1. 1.Cancer CenterUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Max-Planck-Institut für SystemphysiologieDortmund 1Germany

Personalised recommendations