Tissue pO2 in Isometrically Contracting Skeletal Muscle of Rats with Portacaval Anastomosis (PCA)

  • P. Boekstegers
  • R. Heinrich
  • M. Günderoth-Palmowski
  • W. Grauer
  • W. Fleckenstein
  • H. Schomerus
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)

Abstract

In patients suffering from liver cirrhosis alterations of pulmonary microcirculation at rest and exercise have been described (Schomerus et al. 1975, Huber et al. 1980). Measurements of local pO2 in resting skeletal muscle of patients with liver disease indicate that microcirculation of peripheral organs is also influenced by liver cirrhosis (Fleckenstein et al. 1984 a,b). Portacaval end-to-side anastomosis (PCA) in rats leads to similar changes of systemic circulation as described in patients with liver cirrhosis: “hyperdynamic cardiovascular state” including increased cardiac output, decreased peripheral vascular tone, increased pulmonary venous admixture and elevated mean systolic ejection rate (Liehr et al. 1976). We used this well defined experimental model to investigate the effect of hypercirculation on microcirculation and tissue oxygenation in peripheral organs. In former studies we found the establishment of PCA in rats with intact liver function to result in a marked increase of mean muscular pO2 at rest. Furthermore we reported data that late after PCA regulation of muscle tissue oxygenation is altered under conditions of hyperoxia (Heinrich et al. 1984/1985 a). In order to get more information about tissue oxygenation during hypercirculation we studied the influence of increased oxygen demand (work) on mean muscular pO2 in rats with PCA.

Keywords

Platinum Tyrosine Glucagon Lost Octopamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleckenstein, W., Heinrich, R., Grauer, W., Schomerus, H., Dölle, W., Weiss, Ch., 1984a, Fast local regulations of muscle pO2-fields in patients suffering from cirrhosis of the liver, in: “Oxygen Transport to Tissue - VI”, Bruley, Bicher, Reneau, eds., Plenum Press, New York.Google Scholar
  2. Fleckenstein, W., Heinrich, R., Huber, A., Grauer, W., Schomerus, H., Günderoth, M., Dölle, W., Weiss, Ch., 1984b, Muscle pO2 distribution and pulmonary gas transfer in patients with liver cirrhosis, in: “Atemgaswechsel und 02-Versorgung der Organe”, Grote & Witzleb, eds., Franz Steiner Verlag, Wiesbaden.Google Scholar
  3. Heinrich, R., 1985, Messungen des Sauerstoffdrucks im Gewebe bei Leberatrophie und Leberzirrhose. Tierexperimentelle Studien und Untersuchungen an Patienten. Habilitationsschrift Med. Fakultät, Universität Tübingen.Google Scholar
  4. Heinrich, R., Grauer, W., Schomerus, H., Günderoth, M., Höper, J., Kessler, M., 1984, Measurements of local pO2 in the resting skeletal muscle of rats with portocaval anastomosis (PCA) under normoxic conditions, in:“Oxygen Transport to Tissue - VI”, Bruley, Bicher, Reneau, eds., Plenum Press, New York.Google Scholar
  5. Heinrich, R., Bayer, C., Günderoth, M., Dette, S., Grein, N., Grauer, W. Schomerus, H., 1985a, Regulation of muscle pO2 in rats with portacaval anastomosis, in: “Oxygen Transport to Tissue - VII”, Plenum Press, New York, (in press).Google Scholar
  6. Heinrich, R., Dette, S., Grein, N., Günderoth-Palmowski, M., Grauer, W., Fleckenstein, W., Schomerus, H., 1985b, pO2-distribution in muscle and renal cortex of rats with chronic liver changes, in: “Klinische Sauerstoffdruckmessung”, Ehrly, Nauss, Huch, eds., Münchner wissenschaftliche Publikationen.Google Scholar
  7. Huber, A., Schomerus, H., Reinhard, U., 1980, Einschränkung der körperlichen Leistungsfähigkeit bei Patienten mit Leberzirrhose. Beziehungen zu Störungen des pulmonalen Gasaustausches, Verh. Dtsch. Ges. Inn. Med., 86: 1182.Google Scholar
  8. James, J.H., Hodgman, J.M., Funovics, J.M., Fischer, J.E., 1967, Alterations in brain octopamine and brain tyrosine following portacaval anastomosis in rats, J. Neurochem., 27: 223.CrossRefGoogle Scholar
  9. Kessler, M., Lübbers, D.W., 1966, Aufbau und Anwendungsmöglichkeiten verschiedener pO2-Elektroden, Pflügers Arch., 291: 82.Google Scholar
  10. Lee, S.H., Fisher, B., 1961, Portacaval shunt in the rat, Surgery, 50: 668.PubMedGoogle Scholar
  11. Liehr, H., Grün, M., Thiel, H., 1976, Hepatic blood flow and cardiac output after portacaval anastomosis in the rat, Acta Hepato.-Gastroenterol., 23: 31.Google Scholar
  12. Nespoli, A., Bevilacqua, G., Staudacher, G., Rossi, N., Salerno, E., Castelli, M.R., 1981, The role of false neurotransmitters in the pathogenesis of hepatic encephalopathy and hyperdynamic syndrome in cirrhosis, Arch. Surg., 116: 1129.Google Scholar
  13. Schomerus, H., Buchta, J., Arndt, H., 1975, Changes in EEG and pulmonary venous admixture during a protein load in patients with liver cirrhosis, Europ. J. Clin. Invest., 5: 515.Google Scholar
  14. Starzl, T.E., Francavilla, A., Halgrimson, C.G., Francavilla, F.R., Porter, K.A., Putnam, C.W., 1973, The origin, hormonal nature and action of hepatotrophic substances in portal venous blood, Surg. Gyn. Obstet., 137: 179.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • P. Boekstegers
    • 1
    • 2
  • R. Heinrich
    • 1
    • 2
  • M. Günderoth-Palmowski
    • 1
    • 2
  • W. Grauer
    • 1
    • 2
  • W. Fleckenstein
    • 1
    • 2
  • H. Schomerus
    • 1
    • 2
  1. 1.Med. Univ. Klinik (Dep. I)TübingenGermany
  2. 2.Institut für PhysiologieMed. Hochschule LübeckGermany

Personalised recommendations