Advertisement

Metabolic, Ionic and Electrical Responses to Oxygen Deficiency in the Newborn Dog in Vivo

  • A. Mayevsky
  • E. Yoles
  • N. Zarchin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 200)

Abstract

The interrelation between energy metabolism and the functional state of the newborn brain is a critical factor in understanding cerebrovascular disturbances in newborn babies after birth. Changes in the cerebral blood flow after birth may lead to brain injury due to a decrease in oxygen supply and to an imbalance between demand and supply. Neonatal asphyxia which ended up in hypoxic encephalopathy had been reported in 1% of the total deliveries (1).

Keywords

Cerebral Blood Flow Newborn Baby NADH Level Neonatal Asphyxia Extracellular Potassium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. M. MacDonald, J. C. Mulligan, A. C. Allan, and P. M. Taylor, Neonatal asphyxia. Relationship of obstetric and neonatal complications to neonatal mortality in 38,405 consecutive deliveries, J. Pediatr. 96: 898 (1980).Google Scholar
  2. 2.
    R. W. Brennan, M. J. Hernandez, R. C. Vannucci, and G. S. Bowman, Cerebral blood flow and oxidative metabolism in the newborn dog, Soc. Neurosci. 6th Ann. Meet., Toronto, p. 215 (1976).Google Scholar
  3. 3.
    H. E. Himwich. and J. F. Fazekas, Comparative studies of the metabolism of the brain of infant and adult dogs,. J. Physiol. 132: 454 (1941).Google Scholar
  4. 4.
    C. Kennedy, G. D. Grave, J. W. Jehle, and L. Sokoloff, Blood flow to white matter during maturation of the brain, Neurology 20: 613 (1970).PubMedGoogle Scholar
  5. 5.
    C. Kennedy, G. D. Grave, J. W. Jehle, and L. Sokoloff, Changes in blood flow in the component structures of the dog brain during postnatal maturation, J. Neurochem 19: 2423 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    M. J. Hernandez, R. W. Brennan, R. C. Vannucci, and G. S. Bowman, Cerebral blood flow and oxygen consumption in the newborn dog, Am. J. Physiol. 234: R209 (1978).PubMedGoogle Scholar
  7. 7.
    M. J. Hernandez, R. W. Brennan, and G. S. Bowman, Autoregulation of cerebral blood flow in the newborn dog, Brain Res. 184: 199 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    H. M. Shapiro. J. H. Greenberg, K. Van Horn Naughton, and and M. Reivich, Heterogeneity of local cerebral blood flow. PaCO sensitivity in neonatal dogs. J. Apol. Phy ,siol. 49:113 (1980).Google Scholar
  9. 9.
    M. J. Hernandez. R. W. Brennan, and R. A. Hawkins, Regional cerebral blood flow during neonatal asphyxia, jn: “Cerebral Metabolism and Neural Function,” J. V. Passonneau, R. A. Hawkins, W. D. Lust, and F. A. Welsh, eds., Williams and Wilkins, Baltimore p. 196 (1980).Google Scholar
  10. 10.
    C. M. Friedli, D. L. Sclarsky and A. Mayevsky, A new multi-probe assembly for surface monitoring of ionic, metabolic and electrical activities in the awake brain, Am., Physiol. 243: R462 (1982).Google Scholar
  11. 11.
    A. Mayevsky, Multiparameter monitoring of the awake brain under hyperbaric oxygenation, J. Appl. Physiol. 54: 740 (1983).PubMedGoogle Scholar
  12. 12.
    B. Chance, N. Oshino, T. Sugano, and A. Mayevsky, Basic principles of tissue oxygen determination from mitochondrial signals. Internat. Symp. Oxygen Transport to tissue, la: “Adv. Exp. Med. Biol.,” vol. 37A, Plenum Pub., New York p. 277 (1973).Google Scholar
  13. 13.
    A. Mayevsky, Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res. Rev. 7: 49 (1984).Google Scholar
  14. 13.
    A. Mayevsky, Brain NADH redox state monitored in vivo by fiber optic surface fluorometry. Brain Res. Rev. 7: 49 (1984).Google Scholar
  15. 15.
    N. M. Gregoire, A.Gjedde, F. Plum, and T. E. Duffy, Cerebral blood flow and cerebral metabolic rates for oxygen, glucose and ketone bodies in newborn dogs, J. Neurochem. 30: 63 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    F. E. Samson, and N. A. Dahl, Cerebral energy requirement of neonatal rats, Am. J. Physiol. 188: 277 (1980).Google Scholar
  17. 17.
    O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W. Schulz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239: 18 (1964).PubMedGoogle Scholar
  18. 18.
    J. H. Thurston, and D. B. McDougal, Effect of ischemia on metabolism of the brain of the newborn mouse, Am.,L, Physiol. 216: 348 (1969).Google Scholar
  19. 19.
    C. Tordet-Caridroit, The oxygen uptake of the developing brain in the rat with intra-uterine growth retardation, F,xperientia 27: 1034 (1971).CrossRefGoogle Scholar
  20. 20.
    N. Zarchin and A. Mayevsky, The effects of age on the metabolic and electrical responses to decapitation in the awake and the anesthetized rat brain, Mechan. Ageing Deyel_pp. 16: 285 (1981).CrossRefGoogle Scholar
  21. 21.
    P. Mares, N. Kriz, G. Brozek, and J. Bures, Anoxic changes of extracellular potassium concentration in the cerebral cortex of young rats, Exo. Neurol. 53: 12 (1976).Google Scholar
  22. 22.
    A. J. Hansen, Extracellular potassium concentration in juvenile and adult brain cortex during anoxia, ActaPhysiol. Scand. 99: 412 (1977).CrossRefGoogle Scholar
  23. 23.
    A. Mayevsky, C. M. Friedli, and M. Reivich, Metabolic, ionic, and electrical responses of the gerbil brain to ischemia, Am. J. Physiol. 248: R99 (1985).PubMedGoogle Scholar
  24. 24.
    A. Mayevsky, N. Zarchin, and Tannenbaum, Brain responses to experimental oxygen deficiency in the mongolian gerbil, jn, Brain responses to experimental oxygen deficiency in the mongolian gerbil, jn: “Oxygen Transport to Tissue, VI,” Plenum Press, New York p. 191 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • A. Mayevsky
    • 2
  • E. Yoles
    • 1
  • N. Zarchin
    • 1
  1. 1.Life Sciences DepartmentBar Ilan UniversityRamat GanIsrael
  2. 2.Johnson Research Foundation Medical SchoolUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations